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SUMMARY 

 

Transcatheter aortic valve implantation (TAVI) is an effective alternative 

treatment option for patients with severe aortic stenosis, who are at a high risk for 

conventional surgical aortic valve replacement or considered inoperable. Despite the 

short- and mid-term survival benefits of TAVI, adverse clinical events, such as 

paravalvular leak, aortic rupture, and coronary occlusion, have been reported extensively. 

Many of these adverse events can be explained from the biomechanics perspective. 

Therefore, an in-depth understanding of biomechanical interaction between the device 

and native tissue is critical to the success of TAVI. The objective of this thesis was to 

investigate the biomechanics involved in the TAVI procedure using patient-specific finite 

element (FE) simulations. Patient-specific FE models of the aortic roots were 

reconstructed using pre-procedural multi-slice computed tomography images. The 

models incorporated aged human aortic material properties with material failure criteria 

obtained from mechanical tests, and realistic stent expansion methods. TAV deployment 

and tissue-device interaction were simulated; and the simulation results were compared to 

the clinical observations.  Additionally, parametric studies were conducted to examine 

the influence of the model input on TAVI simulation results and subsequently the 

potential clinical complications such as paravalvular leak, annular rupture, and coronary 

artery occlusion. The methodology presented in this thesis could be potentially utilized to 

develop valuable pre-procedural planning tools to evaluate device performance for TAVI 

and eventually improve clinical outcomes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Cardiovascular disease is the leading cause of death in the United States. Among 

various types of cardiovascular disease, valvular heart disease is a significant cause of 

morbidity and mortality; and it affects approximately 11.7% of people older than 75 years 

old. In the United States, it is estimated that approximately 85,000 heart valve related 

procedures are performed annually. Valvular heart disease is responsible for about 22,144 

deaths per year [1]. The two most common valvular heart diseases are aortic stenosis and 

mitral valve regurgitation. In this dissertation, my research effort primarily focuses on the 

study of aortic valve function and the modeling of the associated aortic valve intervention 

techniques. Thus, I will begin this chapter with a brief introduction of the heart and its 

four valves, then the normal aortic valve structure and function, followed by main clinical 

issues and current clinical treatment techniques for aortic valve disease. Then, I will give 

a brief overview of current aortic valve biomechanical studies, which will lead to the 

motivation of my research on the modeling of minimally invasive aortic valve 

replacement procedure. 

1.1.1 Heart and Heart Valves 

 The heart has four major valves: aortic, mitral, tricuspid and pulmonary valves. 

As shown in Figure 1.1, aortic valve is between the left ventricle and the aorta. Mitral 

valve is between the left atrium and left ventricle. Tricuspid valve is located between the 

right atrium and right ventricle. Pulmonary or pulmonic valve is between the right 

ventricle and the pulmonary artery.  The common function of these four valves is to 
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ensure unidirectional flow of blood in and out of the heart. The four valves are primarily 

passive structures in terms of biomechanical functions, i.e., they open and close due to 

the differential blood pressure on both sides of the valve leaflets. Closure of the valve is 

achieved by coaptation of the leaflets (or cusps). Proper coaptation of the leaflets 

prevents backflow of blood. Diseased valves often involve improper coaptation and 

closure of the leaflets; and the two most common heart valve diseases are stenosis and 

regurgitation. Stenosis is narrowing of the valve orifice, which leads to restriction of the 

blood flow. Conversely, regurgitation is backflow of blood through a defective heart 

valve. Other valvular diseases are rheumatic diseases, which results in valve leaflet 

prolapse, or billowing of the leaflets, and sometimes cause regurgitation. The aortic 

mitral and mitral valves are most commonly affected because they are located on the left 

side of the heart, which is responsible to pump blood to the rest of the body and has 

higher pressure and more turbulent hemodynamic conditions. 

 

Figure 1.1 Anatomical structure of the heart and the heart valves (adopted from 

www.stdom.com) 

 

 The blood circulation inside the heart is shown in Figure 1.2. Blood pressure rises 

in the left ventricle at the beginning of systole. When left ventricle contracts and the left 
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ventricle pressure is higher than the aortic pressure as shown in Figure 1.3, the aortic 

valve opens, allowing blood to enter the aorta from the left ventricle. When ventricular 

systole ends, pressure in the left ventricle rapidly drops (Figure 1.3), and the aortic 

pressure forces the aortic valve to close. As the atrium contracts, blood flows from the 

left atrium into the left ventricle through the open mitral valve. When the ventricle is full, 

the mitral valve shuts. This prevents blood from flowing backward into the atrium while 

the ventricle contracts. 

 

Figure 1.2 Blood circulation inside human heart as well as between the heart and the rest 

of the body (adopted from thefoodweeat.co.uk) 

 

 Cardiovascular disease is the leading cause of death for both men and women in 

the United States, and valvular heart disease constitute a major part of the cardiovascular 

disease [2]. Among valvular heart diseases, aortic valve diseases occur frequently and 

result in more dire consequences due to its high pressure load bearing nature during the 

cardiac cycle. There are two common aortic valve diseases: 1) aortic stenosis, where the 

valve cannot open completely, thus obstructing blood flow from the left ventricle to 
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aorta, and 2) aortic insufficiency, also called aortic regurgitation, where the aortic valve is 

incompetent and blood flows passively back to the left ventricle. 

 

Figure 1.3 Aortic and left ventricular pressure curves during cardiac cycle (adopted from 

http://www.cvphysiology.com) 

 

1.1.2 Aortic Stenosis and Treatments 

 Aortic stenosis (AS) is the narrowing of the aortic valve due to the buildup of 

calcium deposits. AS is the most common valvular heart disease in developed countries 

[3] and its prevalence is growing with an aging population [4, 5]. AS affects about 3% of 

the population above the age of 75 years, and leads to greater morbidity and mortality 

than any other cardiac valve disease [6]. The prevalence of AS in patients older than 65 

years is estimated at 2% for severe stenosis, 5% for moderate stenosis, and 9% for mild 

stenosis [7]. Severe obstruction of blood flow to the aorta from the left ventricle is 

usually characterized (Table 1.1) by the following: (1) an aortic jet velocity greater than 
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4 m/sec; (2) a mean systolic pressure gradient exceeding 40 mm Hg in the presence of a 

normal cardiac output; or (3) an effective aortic orifice less than approximately 1.0 cm
2
 in 

an average-sized adult (i.e., < 0.6 cm
2
/m

2
 of body surface area, approximately 25% of the 

normal aortic orifice of 3.0 to 4.0 cm
2
) [7]. After the appearance of symptoms, AS is 

associated with a high mortality rate (approximately 50% in the first 2 years) if left 

untreated [8, 9]. 

 

Table 1.1 Severity of aortic stenosis  

Degree of 

aortic stenosis 

Mean 

gradient 

(mmHg) 

Aortic valve area (cm
2
) Jet velocity (m/sec) 

Mild aortic 

stenosis 
< 25 > 1.5 < 3.0 

Moderate 

aortic stenosis 
25 - 40 1.0 - 1.5 3.0 - 4.0 

Severe aortic 

stenosis 
> 40 < 1.0 > 4.0 

 

 

 Currently, there is no effective medical therapy for severe AS [10]. Surgical aortic 

valve replacement (SAVR) with either a mechanical or bioprosthetic heart valve (Figure 

1.4), also called a tissue valve, is the standard of care for patients with severe 

symptomatic AS. Not only does it offer symptomatic relief, the operation improves long 

term survival. In the absence of serious comorbidities, the procedure is associated with 

low operative mortality. In the United States, there were over 75,000 aortic valve 

replacement procedures performed in 2008 [11].  Mechanical heart valves shown in 

Figure 1.4a are usually made from metal and/or pyrolitic carbon, a hard ceramic-like 

material. Bioprosthetic heart valves shown in Figure 1.4b are normally made from soft, 

leather-like biological materials and are intended to mimic the function of the native 

aortic valve. A mechanical heart valve could last a lifetime, but patient requires a daily 



www.manaraa.com

 6 

dosage of anticoagulant medicine. Patients on anticoagulant medicine must follow dietary 

restrictions and cannot participate in physical activities or sports that might cause 

bleeding. Alternatively, implantation of a bioprosthetic heart valve is also not ideal. 

Although bioprosthetic heart valves do not induce blood clotting and thus do not require 

anticoagulant medicine, they eventually fail due to fatigue or calcification and need to be 

replaced surgically or by a less invasive treatment. Compard with the lifetime durability 

of the mechanical heart valve, in the best-case scenario, the bioprosthetic heart valve 

could only last 20 years. 

 Nevertheless, in clinical practice it was reported that approximately 50% of 

patients with severe AS are referred for open heart surgery and only about 40% undergo 

SAVR according to data from 10 United States centers of various sizes and geographic 

distribution [12]. Reasons for not undergoing AVR included high perioperative risk, 

advanced age, lack of symptoms, and patient/family refusal [12-14]. Therefore, there is a 

pressing need for less invasive, non-surgical techniques for those high risk patients.  

  

   (a)     (b) 

Figure 1.4 Representatives of mechanical and bioprosthetic heart valves: (a) St. Jude 

mechanical heart valve with two semicircular leaflets and (b) Carpentier-Edwards 

PERIMOUNT bioprosthetic heart valve with three tissue leaflets (adopted from 

www.heart-valve-surgery.com and my.clevelandclinic.org) 

 

http://www.heart-valve-surgery.com/
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1.2 TAVI Procedure  

 For the inoperable [15] and “high risk” [16] patients, minimally-invasive 

transcatheter aortic valve implantation (TAVI) presents a viable treatment option [17].  

Since the first-in-man TAVI was performed in 2002 [18], more than 90,000 patients 

worldwide [19] have benefited from this revolutionary procedure. Short and mid-term 

clinical results are promising and show that TAVI can significantly improve valve 

hemodynamics and patient quality of life with the added benefits of lower operative risk 

and shorter recovery time compared to SAVR [20, 21]. 

 The TAVI procedure were described in detail by Webb et al. [22] in 2006. 

Briefly, patients receive a general anesthesia with TEE guidance when the procedures are 

performed to facilitate sheath placement and removal. Aortic root angiography is usually 

used to help position the prosthesis. Before the TAVI procedure, balloon valvuloplasty 

can be performed with a balloon slightly smaller than the diameter of the TAV. If 

retrograde transfemoral is chosen as the TAVI access technique, the delivery sheath is 

inserted over a guidewire into the femoral artery. The steerable catheter is used to direct 

the prosthesis through the aorta and cross the stenotic native valve. After the TAV is 

positioned coaxially with the native valve, the prosthesis is deployed during rapid 

ventricular pacing under the TEE and angiographic guidance (Figure 1.5). Angiography 

and TEE are also performed to reassess valve competency and coronary patency. Once 

the delivery system is retrieved from the patient, the femoral access site is closed 

surgically.   
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Figure 1.5 (a) Balloon-mounted prosthetic valve positioned adjacent to native valve 

calcification (b) Partial inflation of the deployment balloon (c) Full inflation of the 

deployment balloon. (Images are obtained from Hartford Hospital, CT with Institutional 

Review Broad approval). 

 

1.3 TAVI Complications 

 Ideally an implanted TAV device should ensure optimal diastolic coaptation with 

negligible regurgitation, maintain a minimal transvalvular pressure gradient during 

systole,  minimize downstream turbulence and stagnation, and allow physiological 

coronary artery flow patterns [23].  However, in contrast to traditional SAVR, where the 

surgeon has direct access to the aortic root to suture the prosthesis into place, in TAVI, 

the prosthesis is remotely delivered, preventing the physician from knowing how the 

suture-less device will interact with the surrounding tissues.  Furthermore, unlike in 

SAVR where the calcified native valve tissues are excised, in TAVI, these tissues are left 

intact and may become displaced and/or alter the final TAV stent shape during 

deployment, owing to many procedural uncertainties.  Consequently, despite worldwide 

clinical successes, there are still many complications associated with TAVI including: 

paravalvular leak (PVL), stroke, device migration, aortic root rupture, and coronary 

artery occlusion [24-27].    

(a) (b) (c)
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 PVL due to gaps between the deployed stent and the surrounding tissue is the 

most frequent TAVI complication (Figure 1.6).  In the Placement of AoRtic 

TraNscathetER Valve (PARTNER) trial [15], 68% of patients exhibited trace to mild 

PVL at 30 days, while 12% had moderate to severe PVL, representing much higher rates 

compared to conventional SAVR.  Still more concerning, the 2-year results from the 

PARTNER trial showed that even mild PVL was associated with increased mortality 

[28]. Significant PVL is typically the result of 1) annulus-prosthesis mismatch due to the 

pattern or extent of calcification or annular eccentricity, 2) undersizing of the device, or 

3) suboptimal positioning of the device [25]. In some cases post-implantation balloon 

dilation of the valve is considered to correct PVL; however, it is not always effective and 

has been shown to be associated with a higher incidence of cerebrovascular events [25, 

29].  Balloon postdilation increases the interaction force between the TAV stent and the 

surrounding native aortic tissue, thus increasing the chance for calcium deposits to 

become dislodged and released into the blood stream causing stroke. 

 

Figure 1.6 Echocardiogram and angiogram of a TAVI case. The implantation height of 

the first TAV was suboptimal, as the native leaflet insertion point was adjacent to the 

lower edge of the stent. PVL (Figure 1.2a) was present after the deployment of the first 

TAV. Subsequently, a second TAV (Figure 1.2b) was deployed inside the first one, in an 

attempt to correct the complication due to suboptimal valve positioning. (Images are 

obtained from Hartford Hospital, CT with Institutional Review Broad approval). 

(a) (b)



www.manaraa.com

 10 

 TAVI-associated stroke is an invariable concern.  The 30-day major stroke rate in 

the PARTNER trial was 3.8% and 5% in cohorts A and B respectively [15, 16]. A large 

multicenter registry showed that 54% of strokes occurred within 24 h of the TAVI 

procedure [29, 30]. Along with balloon postdilation, valve dislodgement due to 

insufficient friction between the stent frame and the aortic wall, has also been identified 

as an independent predictor of acute stroke [29].  Antithrombotic treatment is generally 

used after TAVI to reduce stroke risk, while several embolic protection devices have 

been developed for use during TAVI in the hope that they may prevent cerebral 

embolization. 

 Aortic root rupture (Figure 1.7) during TAV deployment is a more rare but 

catastrophic complication of TAVI reported in about 1% of cases [26].  It is a major 

concern particularly for balloon-expandable TAVI devices, because the balloon 

expansion force can exert large forces on the stent and surrounding tissues.  Left 

ventricular outflow tract (LVOT) calcification, aggressive device oversizing, small 

annular size, and excessive annular calcification have all been identified as risk factors 

for aortic rupture with balloon expandable TAVI devices [31, 32]. A ruptured aortic root 

can only be treated with emergency open heart surgery.   

 

Figure 1.7 (a) Two-dimensional CT scan and (b) three-dimensional CT reconstruction 

showing the presence of a contained aortic root rupture with a false aneurysm (red arrow) 

[33]. 
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 During deployment the TAV may also displace the native leaflets or calcification 

and cause coronary obstruction (CO). CO is also a rare, but life-threatening complication 

of TAVI [24, 34, 35].  Baseline and procedural variables associated with CO include: 

advanced age, female sex, no previous coronary artery bypass graft, the use of a balloon-

expandable TAV, and previous surgical aortic bioprosthesis. Additionally, a lower-lying 

coronary ostium (<12 mm above the annulus) and a shallow SOV (<30 mm) have been 

identified as anatomical factors associated with CO. In most cases, CO can be 

successfully treated by percutaneous coronary intervention (Figure 1.8); however, 

hemodynamic support and/or conversion to open heart surgery are often necessary. 

 

Figure 1.8 Multi-detector computed tomography scan showing the spatial relationship 

between the prosthesis and coronary artery (red arrow) [24]. 

 

1.4 TAVI procedural considerations 

 A successful TAVI procedure is the result of proper device selection and 

deployment strategy; however, determining these factors is not trivial.  A patient’s unique 

aortic root anatomy, tissue properties, and dimensions are all of importance.  
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1.4.1 Aortic Root Anatomy 

 The healthy aortic root (Figure 1.9) is defined as the portion of the LVOT 

delineated by the sinotubular ridge superiorly and the bases of the valve leaflets inferiorly 

[36]. It is comprised of the sinuses, the aortic valve leaflets, the commissures, and the 

interleaflet triangles.  The sinuses are the expanded portions of the aortic root which are 

confined proximally by the valve leaflet attachments and distally by the sinotubular 

junction.  The valve leaflets are attached to the aortic root wall in a semilunar fashion.  

Proximal to the leaflets, is the aortic annulus.  The term “annulus” is frequently used in 

the TAVI device sizing process, but it should be noted that in this context the term 

“annulus” refers to a location rather than a structure.  The aortic annulus is not in fact a 

clearly defined structure.  The posterior aspect of the annulus between the left and non-

coronary leaflets is supported by fibrous tissue connected to the mitral valve for 

approximately 55% of its circumference, while the remainder is supported by ventricular 

muscle [37, 38].  Each of these sub-regions has distinct nonlinear, anisotropic material 

properties, and plays a unique role in the aortic biomechanics.  For instance, the fibrous 

trigones located proximally to the sinuses and along the annulus are much stiffer than the 

aortic tissue to provide mechanical support. 

 

Figure 1.9 (a) Side and (b) bottom views of a human aortic root with (c) three aortic 

leaflets. 

(a) (b) (c)
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 For patients with AS, there is also the presence of calcification to consider (Figure 

1.10).  AS patients present with mild, moderate, or severe degenerative aortic valve 

calcification clinically [39]. A mildly calcified valve is characterized by small, localized, 

and nondense calcium deposits, a moderately calcified valve has dense calcification in 

some but not all leaflets, and a severely calcified valve has severe calcification involving 

the majority of the leaflets. Porcelain aorta is also prevalent in patients with severely 

calcified valves.  Calcium deposition can vary greatly among patients, and adds to the 

already complex anatomy of the healthy aortic root. 

 

Figure 1.10 MSCT images of a stenotic aortic valve in long-axis and short-axis views. 

 

1.4.2 Valve Sizing for TAVI 

 Accurate measurement of the aortic annulus is essential for appropriate TAV 

sizing.  Incorrect valve sizing may lead to PVL, valve embolization, patient-prosthesis 

mismatch, or catastrophic annular rupture [40].  However, while TAV devices typically 

have a circular cross section, several studies have shown that aortic annulus (Figure 1.11) 

is not circular, but rather elliptical in nature, so there is an inherent mismatch in 

geometries.  Recent studies show that area-derived and circumference-derived cross-

(a) (b)
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sectional annulus diameters may be more applicable for TAV sizing as they account for 

this eccentricity [41-45].  Still the complex shape of the aortic root (Figure 1.12) makes 

accurate dimensional measurements intrinsically difficult, particularly based on 2-

dimensional imaging modalities such as echocardiography.  Accordingly, 3-dimensional 

multi-slice computed tomography (CT) has become the preferred modality for aortic 

annular measurement in TAVI procedures [41, 44, 46-48]. 

 

Figure 1.11 Representative short axis views with diameter measurement lines at the 

annulus (A), sinus of Valsalva (B), left coronary ostium (C), right coronary ostium (D), 

and ascending aorta (E). Major axis (vertical) and minor axis (horizontal) lines are 

indicated on the cross-section images. 

 

 



www.manaraa.com

 15 

 

Figure 1.12 Reconstructed finite element model of a human aortic root using CT scans 

with a cross-sectional plane and the landmark points created for each height level, 

ascending aorta (AA), sino-tubular junction (STJ), sinus of Valsalva (SOV), aortic 

annulus, and coronary ostia (CO). 

 

1.4.3 TAVI Devices 

 Currently, the balloon-expandable Edwards SAPIEN, SAPIEN XT (Edwards 

LifeSciences, USA), and self-expandable Medtronic CoreValve (Medtronic, USA) are 

the commercially available TAVI devices in the US (Figure 1.13).  The Edwards 

SAPIEN valve is composed of a trileaflet bovine pericardial valve sutured to a cylindrical 

stainless steel stent. The second generation Edwards SAPIEN XT valve is comprised of a 

cobalt-chromium stent and three bovine pericardial leaflets. Meanwhile, the CoreValve is 

made of three porcine pericardial leaflets sewn to an asymmetrical self-expanding Nitinol 

frame. While success has been demonstrated for several first-generation TAVI systems, 

several design limitations have been identified which have contributed to suboptimal 

clinical outcomes.  
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Figure 1.13 Representatives of transcatheter aortic valve devices: (a) Edwards SAPIEN 

transcatheter aortic valve, (b) Edwards SAPIEN XT transcatheter aortic valve and (c) 

Medtronic CoreValve system (adopted from www.edwards.com and 

www.medtronic.com) 

 

 Many new-generation TAVI devices (Figure 1.14) addressing these limitations 

are currently in the early stages of clinical evaluation [49, 50]. Modifications in the new 

devices include the ability to reposition the valve before final deployment, features to 

reduce PVL, and the introduction of low-profile delivery systems. 

 The decision to implant a particular bioprosthesis depends largely on the 

availability of the device types and sizes, the experience of the clinician with each device, 

and pre-procedural anatomical assessment of the vascular access site and the aortic 

annulus. Although multimodality imaging such as echocardiography, CT, angiography, 

and cardiovascular magnetic resonance are usually used for detailed anatomical 

screening, many TAVI-related complications remain due to  the fact the TAVI does not 

allow the prediction of the interaction between the suture-less stent and native tissue 

before the procedure. Therefore, TAVI device selection based on biomechanical 

evaluation may lead to improved patients outcomes. 

 

 

 

http://www.edwards.com/
http://www.medtronic.com/
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Figure 1.14 New generation transcatheter aortic valve systems [25]. (A) SAPIEN 3 

(Edwards Lifesciences, Irvine, California). (B) CENTERA (Edwards Lifesciences). (C) 

Direct Flow Medical (Direct Flow Medical, Santa Rosa, California). 

(D) Portico (St. Jude Medical, St. Paul, Minnesota). (E) Engager (Medtronic, 

Minneapolis, Minnesota). (F) Heart Leaflet Technologies (Heart Leaflet Technologies, 

Maple Grove, Minnesota). (G) JenaValve (JenaValve Technology, Munich, Germany). 

(H) Sadra Lotus Medical (Boston Scientific SciMed Inc., Maple Grove, Minnesota). 

 

1.5 Biomechanical Evaluation of TAVI 

 Due to the significant differences between the SAVR and TAVI procedures, it is 

important to evaluate the efficacy and potential risk of the TAVI procedure using 

computational and experimental engineering analysis. In this section, major findings and 

limitations of the current studies in the literature on biomechanical factors related to 

TAVI deployment considerations using computational and experimental methods were 

summarized. 

 In a percutaneous, TAVI procedure, a crimped valve is remotely delivered 

through the vasculature via catheter to the site of the diseased valve annulus. Once in 
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place, the valve is expanded (by balloon or self-expansion) to a diameter larger than that 

of the native root (also called “oversizing”). The interactive force between the stent and 

the calcified aortic root effectively locks the TAV in position. During this process, the 

stent can become partially embedded in the surrounding tissue or be deformed into an 

oval shape which can adversely affect valve hemodynamics and durability, in the case 

where the aortic root is heavily calcified and non-extensible [51]. Since there is a large 

variation in  human stenotic aortic valve properties, e.g. annulus size, sinus height, 

coronary ostia location [45, 46, 52] and tissue stiffness [53, 54], determination of the 

tissue-device interaction forces is a non-intuitive, non-trivial task. Yet, not all patients 

have suitable root anatomy and tissue properties for TAVI. Currently the Edwards 

SAPIEN and SAPIEN XT valves are only available in three sizes - size 23, size 26, and 

size 29, while there are numerous valve sizes for their surgical counterparts. This lack of 

TAV sizes limits the patient population suitable for this technique and increases the 

possibility of patient-prosthesis mismatch. Moreover, it reflects a lack of systematic study 

on the biomechanics involved in TAVI. 

 Many catastrophic TAV failures observed in clinics can be explained from the 

biomechanics perspective. For example, a TAV positioned too high in the root close to 

the coronary ostia may cause impairment or occlusion of coronary artery flow, resulting 

in myocardial infarction. On the other hand, if positioned too low, the TAV may induce 

conduction problems and/or damage to the anterior mitral leaflet. Furthermore, ill 

positioning, either too high or too low with respect to the annulus, can also result in 

regurgitation if the TAV fails to seal the annulus.  An aggressively oversized stent may 

cause aortic injury due to excessive radial forces, while a significantly undersized stent 

may migrate due to insufficient radial forces or cause aortic regurgitation secondary to 

PVL.  Excessive or asymmetric calcification may also result in PVL due to incomplete 

apposition of the prosthesis within the native annulus. Thus, a quantitative understanding 

of the aortic tissue-TAV biomechanical interaction is essential for the science-based 
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design of next-generation devices, and an enabling step towards patient-specific device 

selection and procedural planning.  In the proceeding sections the current experimental 

and computational work to study the biomechanics associated with TAVI will be 

discussed. 

 In addition to prosthesis positioning, the angle of LVOT to ascending aorta may 

be important for proper seating of the entire prosthetic frame within the aortic root, with 

an increased angle favoring PVL after implantation.  

1.5.1 Experimental Studies 

 In vitro experiments have been used to study aortic fluid and structural mechanics 

in response to TAVI.  While in vivo flow patterns can be visualized using imaging 

modalities such as transthoracic echocardiography, in vitro experiments allow for 

controlled parametric evaluation of TAV performance with superior spatial and temporal 

resolution. In addition, because it is challenging to obtain in vivo tissue properties and 

biomechanical parameters, in vitro structural experiments have been adopted to measure 

the compliance of human aortic roots and TAV - native tissue interactions. 

1.5.1.1 In Vitro Hemodynamic Studies 

 Particle image velocimetry (PIV) has been used extensively to quantify in vitro 

flow characteristics for TAVI with the Edwards SAPIEN, Medtronic CoreValve, and 

Boston Scientific Lotus Valve (Boston Scientific, USA)  devices [55-57].  Using PIV,  

Stühle et al. [57] have shown that the peak flow for the SAPIEN valve is similar to that of 

the native aortic valve.  Saikrishnan et al. [55] have shown that the Lotus Valve system 

composed of bovine pericardial leaflets and a Nitinol frame, also displays very good 

hemodynamic performance with no regions of stagnation in the vicinity of the valve.  

However, the results of Ducci et al. [58] suggest that SAPIEN and CoreValve 

implantation significantly reduces flow activity at the sinuses of Valvsalva.  The 
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observed flow stagnation may promote thrombus formation and increase the incidence of 

ischemic events post-TAVI. 

 Several groups have also investigated the effects of sub-optimal deployment on 

TAV flow characteristics.  Scharfschwerdt et al. [56] investigated the effects of SAPIEN 

XT deployment in elliptical annuli, as exhibited by many bicuspid aortic valve patients.  

The results showed that while feasible, noncircular deployment could lead to increased 

leakage.  Similarly,  Kuetting et al. [59] have shown that elliptical stent deployment for 

the CoreValve device may result in worsened valve function and regurgitation.  Gunning 

et al. [60] evaluated the potential for turbulent blood flow and blood cell damage due to 

eccentric TAV deployment. There were not substantial differences in the effective orifice 

areas and mean transvalvular pressure gradients between the circular and eccentrically 

deployed valves. However, eccentric deployment induced asymmetric systolic jet 

formation, which increased shear stresses and regions of turbulent flow.  Groves et al. 

[61] examined the effects of TAV positioning on the aortic root fluid dynamics and 

showed that TAVs should be positioned as close to the native valve annulus as possible 

to provide optimal hemodynamics in the sinuses of Valsalva and ascending aorta. Thus it 

is clear that sub-optimal TAV deployment may adversely affect hemodynamic 

performance. 

 In vitro fluid experiments have also been used to develop an elastic model of the 

ascending aorta with aortic calcification [62], and to evaluate a new trileaflet polymer 

TAV design [63].  These studies demonstrate the importance of in vitro methods for 

assessing TAV hemodynamic performance; however, several limitations exist in these 

experiments which prevent the characterization of TAV device-tissue interactions.  1) 

The aortic root geometry was incompletely represented with a lack of LV and 

calcification descriptions, and 2) the human aortic tissues were inaccurately modeled with 

idealized surrogate materials such as acrylic plastic and silicone.  
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1.5.1.2 In Vitro Structural Mechanic Studies 

 Because successful TAV deployment and function relies heavily on the device-

tissue interaction, an understanding of the aortic tissue structural mechanics is also of 

importance.  Li et al. [64] measured and compared the structural compliance of human 

and porcine aortic roots in different regions through whole-vessel pressure inflation tests.  

The tissue stiffness was similar for all three human sinuses in the physiological pressure 

range.  The human aortic tissues were significantly stiffer than the corresponding porcine 

tissues, suggesting that the porcine model may not be representative of the typical TAVI 

patient (≥65 years old).  To study TAV stent-aortic tissue interaction mechanics, 

Mummert et al. [65] deployed self-expandable woven stents in excised ovine and porcine 

aortic roots. They found that the coefficient of friction between the tissue and stent is 

approximately 0.10 ± 0.01, and regardless of the aortic annulus size and tissue species, a 

minimum of approximately 2.5 mm in annular dilatation, induced by about 60N of radial 

force applied by the expanded stent, is needed to anchor a stent in the aortic root and 

prevent device migration.  While they were able to quantify important tissue-stent contact 

variables for self-expanding TAV stents including the stent radial expansion force, stent 

pullout force, and the annulus deformation response, the main limitation of this study, 

was that the experiments were conducted on animal rather than human heart tissues.   

1.5.2 Computational Studies 

 Using computational methods, in vivo TAV device interactions with human 

tissues can be predicted from in vivo and in vitro testing data.  Current imaging 

modalities such as 3D echocardiography, magnetic resonance imaging, and CT, allow for 

accurate reconstruction of anatomical structures to be used in computational analyses [66, 

67].  Recently, a number of researchers have employed finite element (FE) and 

computational fluid dynamics (CFD) methods to investigate the structural and 

hemodynamic performance of TAV devices within patient-specific aortic anatomy. With 
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the proper validation, these models have the potential to be applied to new-generation 

TAV device design and optimization, and TAVI pre-operative planning. 

1.5.2.1 FE Analysis 

 FE analysis has been used to evaluate the structural performance of TAV leaflets 

and stents.  Li et al. [68] simulated the deformation of a pericardial bioprosthetic valve 

under quasi-static loading conditions to examine the effects of different material 

properties and tissue thickness on the leaflet stress distribution (Figure 1.15). Their 

results showed that, as expected, leaflet stresses decrease with increasing tissue thickness, 

and that under the same loading and boundary conditions, bovine pericardium leaflets 

have a lower peak stress than porcine pericardium leaflets.  In a comparable study, Smuts 

et al. [69] investigated the influence the leaflet material and orientation on pericardial 

bioprosthetic valve function. It was concluded that kangaroo pericardium is superior to 

bovine pericardium for TAV applications owing to its lower thickness and greater 

extensibility. In both studies [68, 69] it was concluded that the tissue fiber orientation 

should be aligned with the circumferential direction of the valve.  Sun et al. [70] used a 

similar approach to investigate the impact of elliptical TAV deployment due to severe 

aortic calcification on valve function (Figure 1.16).  They found that the distorted 

elliptical TAV configuration induced elevated leaflet stresses and central aortic 

regurgitation, which has since been confirmed by in vitro experiments [56, 59, 60].  The 

results from these studies have important implications for TAV design.  Such analyses 

could pave the way for the design of next-generation TAV devices with improved 

durability and robustness to non-optimal deployment configurations.  
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Figure 1.15 FE simulation results of PAV (on aortic side) with different material 

properties: maximum principal strain distribution of PAV with (a) BP and (b) PP and 

maximum principal stress (PSI) distribution of PAV with (c) BP and (d) PP. Note the 

mean thickness of each material was used in these simulations [68]. 

 

 

Figure 1.16 Six elliptical models of asymmetric TAV [70]. The first row is Scenario 1 

with eccentricity of (a) 0.3, (b) 0.5, and (c) 0.68. The second row is Scenario 2 with 

eccentricity of (d) 0.3,(e) 0.5, and (f) 0.68. 
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 In order to quantify TAV device-tissue interaction forces, several FE-based 

approaches have been implemented.  The first approach involves the analysis of the 

deployed stent shape to inversely determine radial forces.  Gessat et al. [71] developed a 

spline-based method to reconstruct deformed CoreValve stent geometry from post-TAVI 

CT images.  Local stent deformations were determined by comparing the nominal and 

deformed stent geometries and were described by a set of displacements vectors.  These 

displacement boundary conditions were then applied to an undeformed CoreValve FE 

model using an iterative relaxation algorithm until the deformed stent geometry was 

achieved [72], and the radial components of the stent-tissue interaction force could be 

extracted.  Hopf et al. [72] have also used a similar approach to determine patient-specific 

contact forces between a CoreValve implant and the surrounding tissue.  While these 

studies provide meaningful insight for improved stent design, it is difficult to determine 

the possible mechanisms for altered stent deformation when the deployment process and 

surrounding tissue are not included in the analysis. Through TAV deployment 

simulations in idealized LVOT geometries, Tzamtzis et al. [73] has shown that the host 

tissue geometry and stiffness may impact the radial contact force between the stent and 

tissue. Furthermore, because this approach is retrospective, it is not suitable for predicting 

possible TAVI related complications in an incoming patient.   

   There has been a recent push in the field to develop computational methods for 

the patient-specific analysis of TAV deployment in order to determine the precise effects 

of the aortic geometry and tissue properties.  Capelli et al. [74] and Wang et al. [75] were 

among the first groups to publish patient-specific FE analyses of TAVI deployment. 

These analyses showed that patient-specific geometry induces asymmetric stress 

distributions on the device and tissue [74, 75], and impacts a particular patient’s risk of 

PVL, CO, and rupture [75].  Auricchio et al. [76], Gunning et al. [77], and Morganti et al. 

[78] have since shown that TAV leaflets may become distorted when the device is 

deployed within a realistic rather than an idealized and circular aortic root geometry; 
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thus, patient-specific analyses are important for predicting device function in addition to 

device-tissue interactions. Device positioning to align the TAV commissures with the 

native aortic valve commissures may also be important for reducing TAV leaflet stresses 

and consequently achieving a durable result [77].  More sophisticated FE models, which 

include the aortic valve calcification in addition to the aortic root and leaflets [72, 74, 78-

81], have demonstrated that the extent and location of calcium deposits significantly 

affect the stent expansion process and a patient’s risk of aortic root rupture during 

deployment [80].  The most complex patient-specific TAVI FE model in the literature to 

data presented by Wang et al. [80], which includes the aortic root, aortic leaflets, 

calcification, anterior mitral leaflet, and surrounding myocardium, with elastic and failure 

properties derived from human tissue mechanical tests, has been used for retrospective 

and prospective analysis of multiple TAVI patients.  The simulation results for an 

exemplary retrospective case indicated that SAPIEN deployment would induce aortic 

root rupture below the left main coronary artery due to the stent pushing a large calcium 

deposit into the left coronary sinus during expansion (shown in Figure 1.17).  Rupture in 

this location was also observed in the actual clinical procedure for this patient.  The 

model predictions for potential PVL and CO were also in good agreement with clinical 

evaluations. It is hoped that with further validation of these modeling techniques, TAVI 

engineering analyses could become a part of clinical practice to improve patient 

outcomes.  
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Figure 1.17 Aortic Annulus Rupture [81]:  During a TAVR procedure, tearing and 

rupture occurred below the left main coronary artery. Simulation: (a) local and (b) full 

views of the deformed the aortic root and (c) balloon deployment show annulus tearing 

under the left coronary ostium due to dislodgement of calcification into the vulnerable 

part of the aortic sinus. (For illustration purposes, the yellow geometry in our finite 

element models represented the aortic root, the green geometry represented native aortic 

leaflets, the red geometry represented calcification, and the grey geometry represented 

the TAV stent.) 

 

1.5.2.2 CFD Analysis 

 The inherent limitation of TAVI structural analyses is the lack of blood flow 

information; thus, several groups have used CFD to investigate the effects of TAVI on 

aortic hemodynamics.  In Dwyer et al. [82] the effects of TAV degeneration on the 

device hemodynamic performance were assessed. The results suggest that shear stresses 

acting on the leaflets increase dramatically once a TAV has become stenosed; thus, 

stenosed TAVs should be carefully monitored to prevent catastrophic device failure. In a 

follow-up study, Dwyer et al. [83] quantified TAV migration forces in the noncalcified 

aortic root. The simulation results indicated that there was 6.01N retrograde force acting 

on the closed valve during diastole; and without aortic calcification to anchor the TAV in 

place, stent migration into the left ventricle was a major concern.  Therefore, in order to 

extend the TAVI treatment method to patients with noncalcific aortic sufficiency, 

alternate device anchoring strategies must be explored. Sirois et al. [84] have investigated 
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patient-specific hemodynamic changes following TAVI (Figure 1.18).  The results show 

that while TAVI can reduce the peak transvalvular pressure drop, and increase the 

effective orifice area, it may also disturb flow in the vicinity of the sinuses and coronary 

arteries.  Patient-specific analyses may be important for predicting whether sufficient 

cardiac output reaches the coronary arteries post-TAVI deployment. 

 

Figure 1.18 (a) Pre-deployment long section view of velocity distribution within the TAV 

at 1 ms after peak systole and the same view post-deployment at 7 ms after peak systole.  

 

1.6 Review of the Biaxial Testing Method 

Testing methods to characterize aortic valve tissue properties usually include 

uniaxial and biaxial studies of material properties of aortic valve, and pressure-inflation 

tests of structural properties of aortic roots. As shown the following chapters, biaxial 

testing method has been using the extensively to obtain aortic valve tissues mechanical 

properties, thus its testing setup and theories behind the data analysis are briefly 

summarized here.   

Illustrated on Figure 1.19 is a typical setup of a biaxial testing device. Biaxial 

experiments are generally performed a square piece of planar soft tissue, with the sample 

of about 10-25 mm of lateral length. The specimen is mounted to the biaxial device in 

trampoline-like fashion using thin threads, which allows the edges to expand freely in the 

lateral direction.  Testing is generally performed with the specimen completely immersed 
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in phosphate buffered normal saline (pH 7.4) at room or body (37 C) temperature. The 

central target region must be sufficiently small and located away from the outer edges to 

avoid the tethering effects.  Thus, in the central target region the stress and strain field is 

generally considered homogeneous. 

 

Figure 1.19 a) The biaxial testing system with an actual testing setup, showing the 

camera, the two load cells, the two signal conditioners and the four motors; b) A 

representative specimen is submerged in an appropriate physiologic solution, marked 

with four black graphite particles (optical markers for strain measurement) and attached 

to the device via four hooks at each side. 

 

 The following is a brief summary of the most important aspects of the kinematics 

of a biaxial mechanical test [85].  Consider deformation of membrane tissues under a 

biaxial stress state, including non-zero in-plane shear stresses.  For this case, let 0  and 

  be the (fixed) reference and deformed configurations of the continuous body, 

respectively.  Consider the general mapping 3

0:   R , which transforms a material 

point 0X  to a position ( )  x X  in the deformed configuration. For planar 

homogeneous deformations that occur during a biaxial test, this mapping reduces to 

    1 1 1 1 2 2 2 2 2 1 3 3 3x X X , x X X , x X    (1.1) 

Camera
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where i are the axial stretch ratios and i measures of in-plane shear. i and i are also 

components of the deformation gradient tensor F, which for deformation described in 

eqn. 1.1 is  Grad( )F x or 

1 1 1

1 2 3
1 1

2 2 2
2 2

1 2 3

3

3 3 3
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x x x
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x x x
0

X X X
0 0

x x x

X X X

   
 
  
    
     
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 
    

F    (1.2) 

where the out-of-plane stretch 3 h/H   is the ratio of deformed (h) to the undeformed  

thickness (H) of specimen. F is a critical mathematical quantity since it completely 

describes the deformation state.  Since soft tissues are composed primarily of water and 

have negligible permeability [86], they can be considered incompressible so that 

J=detF=1.  From F the right Cauchy-Green deformation tensor is defined as C=F
T
F, 

from which the components of the in-plane Green-Lagrange strain tensor E = ½ (C – I), 

where I is the identity tensor.  E is the most common finite strain measure in the soft 

tissue literature due to the simplicity of the constitutive formulations. In practice the 

components of E are computed more directly using: 

2 2
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T 2 2

1 1 2 2 2 1
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 
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   

   (1.3) 

The components of F are determined optically to avoid any mechanical interference with 

the specimen.   

 As mentioned above, biaxial testing of biological tissues is performed using thin 

specimens (no more than ~3 mm, usually <1 mm) and acted on by only in-plane loads.  A 
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state of plane stress is thus assumed so that the components ti3 (i=1,2,3) of the Cauchy 

stress t (force/deformed area) are 0.  During actual experiments one can directly measure 

only the initial specimen dimensions, so that the Lagrangian stresses T (force/unit 

original cross-sectional area) are used for convenience.  The components of T are 

computed from the measured axial forces P using 

1 2
11 22

2 1

P P
T , T

hL hL
     (1.4) 

where h is the specimen thickness and Li are the specimen lengths. Since experimentally 

applied loads are normal to the edges, T12=T21=0.  The 2
nd

 Piola-Kirchhoff stress tensor S 

is the most commonly utilized stress tensor for soft tissue constitutive theories, and is 

determined using S=TF
-1

. The Cauchy stress tensor t is determined using t=FT/J, 

which in component form is given by (with T12=T21=0): 

11 1 11 22 2 22 12 1 22 21 2 11t T , t T , t T , t T       (1.5) 

In the case where there is negligible shear strain (i.e. E12~0), the normal components of 

the two stress tensors are related by: 

S11 = T11/1, S22 = T22/2     (1.6) 

1.7 Review of Constitutive Models of Heart Valves  

i) Linear elastic models.  Early attempts to describe valve tissue properties relied 

on the linear elastic material model, following the generalized Hooke’s law [87, 88] 

                  (1.7) 

where σij   is the stress tensor, ϵkl   is the strain tensor and Cijkl   is the fourth order elasticity 

tensor. Linear elastic models are appropriate when the stress-strain relationship is indeed 

linear, and are typically restricted to relatively small deformations. Linear elastic material 
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properties were chosen for various reasons [89-91], but mainly to simplify the simulation 

process in order to achieve numerical convergence in FE simulation solutions. Over the 

physiological range of pressures, valve tissues have been shown to exhibit a relatively 

linear stress-strain relationship [92]. However, for a FE simulation of valve deformation 

from the undeformed state to a deformed state, the valve material response is clearly 

nonlinear and the use of nonlinear material models is essential for any realistic valve 

simulations.  

ii) Fung-elastic model. The Green-strain based exponential model proposed by Fung 

[86] is probably the most commonly used hyperelastic model for characterizing the 

mechanical response of soft tissues [86, 93]. A two-dimensional Fung-type strain energy 

function W can be expressed as: 

𝑊 =
𝑐

2
 𝑒𝑄 − 1 , 

                                             (1.8) 

     𝑄 = 𝐴1𝐸11
2 + 𝐴2𝐸22

2 + 2𝐴3𝐸11𝐸22 + 𝐴4𝐸12
2 + 2𝐴5𝐸11𝐸22 + 2𝐴6𝐸22𝐸12   

where c and Ai are material constants, E is the Green strain tensor.  Note that Eqn. (1.8) 

has other variants  that could be easily treated as a subset or expansion of this model [94]. 

Eqn. (1.8) is often used to model planar biaxial mechanical responses of valve tissues 

[95] and should be implemented with plane stress elements, such as shell or membrane 

elements.  One problem with Eqn. (1.8) is that the transverse shear stiffness in the 13 and 

23 directions are undetermined due to the lack transmural response definitions in this 

model. As shown by Sun et al. [94], valve peak stress is insensitive to change of TSS 

values for the valve closure simulation. However, to simulate valve opening, the tissue 

bending response is critical, and without accurate transverse shear stiffness values, the 

use of Eqn. (1.8) may give inaccurate results.  The details on the FE implementation of 

Eqn. (1.8) can be found in  Sun and Sacks [94]. The 3D Fung model has not been widely 

used to model valve functions. Labrosse et al. [96, 97] has successfully utilized a 3D 

Fung model in simulation of native AV deformation. 
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iii) Strain invariant-based fiber-reinforced hyperelastic model.  Weiss et al. 

[98] and Holzapfel [99] presented a computational framework to implement strain 

invariant-based models that can accommodate the effects of one or two families of elastic 

fibers.  To use this class of models, typically, the valve tissues are assumed to be 

composed of a matrix material with two families of imbedded fibers, each of which with 

a preferred direction. The deviatoric strain invariant   ̅ is used to describe the matrix 

material; and   i̅ is used to describe the properties of the fiber families. One example of 

such models proposed by Holzapfel et al. [99]  can be expressed as  

     0(  ̅- ) 
k 

 k 
∑ [exp {k [   ̅ ( -  )  i̅- ]

 
} - ] 

i   
 

 
( - )

 
 , i  ,  (1.9) 

where, C10, k1, k2 and D are material constants. Particularly, C10 describes the matrix 

material and   enforces near incompressibility.  n addition, a dispersion parameter,  , is 

used to describe the distribution of the fiber orientation. Local coordinate systems should 

be defined for each leaflet to include fiber orientations. There are several variations of the 

model that have been applied to heart valve simulations. Prot et al. [100] implemented the 

Holzapfel material model into the analysis of healthy and pathological human mitral 

valves. Similarly, in the study by Stevanella et al. [101], the MV dynamics were 

simulated where leaflet properties were characterized through a transversely isotropic 

model proposed by May-Newman and Yin [102], while the same material model was 

used by Conti et al. [103] and Auricchio et al. [104] to simulate AV biomechanics. 

1.8 Motivation of the Study 

 The many significant adverse TAVI complications emphasize the importance of 

improved pre-procedural planning methods to improve patient outcomes.  Many of these 

complications can be explained using the biomechanics; thus, an in-depth understanding 

of the biomechanical interactions, such as the radial and tangential forces between the 

TAVI device and the native tissue, is critical to the success of TAVI.  Additionally, each 
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TAV valve has specific characteristics and different aortic anatomic requirements. In 

consequence, pre-procedural planning plays an essential task for correct sizing, proper 

device and patients’ selection, and decision-making on implantation strategies. To help 

clinicians evaluate complicated, high-risk cases with potentials for aforementioned 

complications, I proposed to examine the biomechanical interaction between the native 

tissue and prosthesis during TAVI stent deployment using patient-specific FE 

simulations. 

 The overall goal of this research was to investigate the biomechanics involved 

in the TAVI stent deployment process using a combined experimental and 

computational approach. Specifically, the objectives of this thesis are: 

 i) To reconstruct patient-specific aortic root geometry and obtain TAVI-relevant 

measurements using the CT scans 

 ii) To characterize the aged human aortic root tissue material properties using 

biaxial and uniaxial testing 

 iii) To simulate balloon-expandable stent deployment process during TAVI 

procedure using FE method 

 vi) To evaluate the potential of the clinical adverse events associated with TAV 

expansion using biomechanical characteristics of the FE simulation results 

 Successful completion of the proposed work could generate a computational 

methodology to model TAVI stent deployment, which could provide useful information 

for pre-procedural planning of TAVI. 
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CHAPTER 2 

DIMENSIONAL ANALYSIS OF AORTIC ROOT GEOMETRY 

 

 Accurate measurement of anatomical characteristics of the aortic root is needed 

for pre-procedural planning of many valve procedures and development of novel valve 

intervention devices. Dimensional measurement of the aortic root is usually performed on 

2-dimensional (2D) images, rather than on a full 3-dimensional (3D) geometric model.  

 In this chapter, full 3D aortic root geometric models, reconstructed from clinical 

multi-slice computed tomography (MSCT) scans during diastole, were used to perform 

dimensional analysis of the aortic root geometry of 94 patients. Thirty-two landmark 

points were placed on anatomic feature locations of each aortic root model for the 

measurement of aortic root dimensions. Diameters of the annulus, sinus of Valsalva 

(SOV), sino-tubular junction, and ascending aorta were compared with measurements 

obtained from 2D MSCT images in short axes. Additionally, the spatial distribution of 

the left coronary ostium (CO) within the left coronary sinus was determined due to its 

significance in transcatheter aortic valve implantation. 

 Overall, the results of this chapter suggested that similar results could be obtained 

using the 3D models compared to 2D MSCT images. Since anatomical features of the 

aortic root can be easily identified on a full 3D geometric model, more complete 

information could be obtained. The results of this chapter were published in [45]. 

2.1 Introduction 

 To achieve a successful surgical operation and catheter intervention in patients 

with aortic root diseases, accurate anatomical information of the aortic root and 

surrounding structures is essential. A quantitative understanding of the aortic root 

geometry is also necessary for designing innovative interventional prosthesis and for 
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constructing numerical models, such as a finite element (FE) model and a computational 

fluid dynamics model, to evaluate biomechanical behaviors of aortic tissues and host 

tissue-device interactions during treatment. In recent years, multi-slice computed 

tomography (MSCT) has been used to generate accurate measurement of aortic 

dimensions for pre-procedural planning of many valve procedures including valve-

sparing aortic root repair, transcatheter aortic valve implantation (TAVI), as well as 

treatment of coronary artery or other aortic diseases [3, 18, 22, 105-108].  

 Previous studies [105, 109, 110] have showed that clinical MSCT could be used 

to measure aortic root anatomic geometries with greater accuracy than 2-dimensional 

(2D) echocardiography or angiography. Although the MSCT data are collected in a 3-

dimensional (3D) volumetric format, the geometric measurements of the aortic root are 

currently determined from a 2D slice plane, often in the coronal or sagittal views. Since 

the aortic root is an asymmetric, non-uniform 3D structure (e.g., the three aortic sinuses 

have different sizes), some anatomic dimensions may not be fully measurable on a 2D 

cross-sectional image. In this chapter, we aimed to explore a new approach to investigate 

anatomic dimensions of the aortic root using full 3D aortic valve geometric models 

extracted from clinical 64-slice CT scans. We attempted to establish the feasibility of 

using the 3D models for such dimensional measurements, i.e., similar results could be 

obtained using the 3D models compared to 2D MSCT images. Moreover, since 

anatomical features of the aortic root can be easily identified on a full 3D geometric 

model, more complete information than 2D measurements may be obtained. 

2.2 Methods 

2.2.1 Study Population 

 Full phase cardiac MSCT scans were collected from patients at Hartford Hospital 

(Hartford, CT) between 2005 and 2009. Institutional Review Broad approval to review 
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de-identified images was obtained for this study. All patients underwent MSCT scans 

because of suspected coronary artery disease. The exam images were used for 

retrospective analysis in this study. Patients with severe aortic stenosis and bicuspid 

aortic valve were not included in this study to simplify the data comparison between the 

3D method and the conventional 2D measurements. 

2.2.2 MSCT Image Acquisition 

 The MSCT examination was performed on a GE LightSpeed 64-channel volume 

computed tomography scanner. Prior to MSCT angiography, prospective calcium score 

acquisition was performed (collimation 25 × 3.0 mm, rotation time 375 ms, voltage 120 

kV, and tube current 500 mA). The temporal window was set at 75% interval after the R 

wave for electrocardiographically (ECG) triggered prospective reconstruction.  

 For MSCT coronary angiography, a collimation of 25-30 × 0.625 mm and a 

rotation time of 375 ms were used resulting in a temporal resolution of less than 200 ms. 

The tube current modulation was automated to a maximum of 800 mA at 120 kV. Images 

were obtained with helical scanning and ECG gating. A timing bolus of 20 cc bolus of 

Ultravist 370 contrast (Bayer Healthcare Pharmaceuticals, NJ) was administered and 

followed by a 20 cc bolus of normal saline. A 1 s axial scan with a 1 s inter scan delay 

with a region of interest at the level of the ascending aorta (AA) was obtained until 

contrast density detected. 80 cc of Ultravist 370 contrast was administered via the 

antecubital vein at a flow rate of 5.0 ml per second using a Medrad Stellant dual headed 

injector (Medrad, Warrendale, PA). Data acquisition was obtained during an inspiratory 

breath hold of approximately 6-8 s with ECG gating. In general, a total of 2000 slices of 

images with thickness of 0.625 mm were collected for the whole cardiac cycle. 



www.manaraa.com

 37 

2.2.3 Diameter Measurement on 2D MSCT Images 

 MSCT scans were loaded into a custom-made image processing program, written 

with C++ and the Visualization Toolkit library (VTK) [111]. Full 3D rotation of the CT 

volume within the program allowed a 2D slice plane to be cast through the volume to 

create an oblique view in any direction. Diameters of aortic annulus, the sinus of Valsalva 

(SOV), the sino-tubular junction (STJ), and the AA were measured at the diastole phase 

using oblique short-axis views. The aortic valve annulus was defined at the lowest level 

of the insertion of the valve cusps into the aortic root [112], where maximum and 

minimum annulus diameters were measured. The diameter of the SOV was determined 

from measurements extending from the middle of the non-coronary sinus (NCS) cusp to 

the opposite commissure [112]. The STJ diameter was measured at the junction of the 

sinuses and tubular portion of the AA [112]. The AA diameter was measured 

approximately 5 mm above the STJ. 

2.2.4 Diameter Measurement on 3D Aortic Root Models 

 The same MSCT scans were imported into the Mimics software (Materialise, 

Leuven, Belgium) for the 3D reconstruction and evaluated using a window width of 950 

and -50 Hounsfield units in Mimics. The interior surfaces of the aortic root were 

automatically identified and separated from the rest of the chest images to create a 3D 

representation. FE surface mesh was generated for the 3D aortic root model using the 

HyperMesh (Altair Engineering, Inc., MI) software.  

 Thirty-two landmark points (Figure 2.1) were selected from the model to identify 

the anatomic regions of the aortic annulus, the SOV, the STJ, the AA, and the coronary 

ostia (CO). For the aortic annulus, one point was created at the nadir of the bulging 

surface of each sinus. The three nadirs were used to define the annulus plane, on which 

another point was selected approximately in the middle of two sinuses. A smooth curve 

was generated using these six points to represent the perimeter of the aortic annulus 
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(Figure 2.1  and Figure 2.2 a&b). For the SOV, one point was created at the zenith of 

each sinus surface. Similar to the annulus, the three zeniths were used to define the SOV 

plane. Due to the cloverleaf geometry of the SOV, three more points were selected 

between two zeniths, as shown in Figure 2.1 & 2.2. Thus, a total of 12 landmark points 

were used to define the perimeter of the SOV. The SOV perimeter was also determined 

by the largest circle through the cloverleaf geometry and the smallest circle through the 

inter-sinus trigonal region (Figure 2.2 c&d). The STJ plane was defined at the superior 

border of the sinuses (Figure 2.3) and the AA was measured approximately 5 mm above 

the STJ (Figure 2.3) using 6 landmarks, similar to the aortic annulus.  

 

Figure 2.1 Finite element model of the aortic root and the landmark points created for 

each height level, ascending aorta (AA), sino-tubular junction (STJ), sinus of Valsalva 

(SOV), aortic annulus, and coronary ostia (CO) in the (a) front view and (b) in the side 

view. 

 

 

 

AA

STJ

SOV

Annulus

CO
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(a)                                    (b) 

 

(c)                                    (d) 

Figure 2.2 The measurement of the sinus of Valsalva (SOV) (a) the maximum diameter 

of the SOV in the coronal view (b) diameter measurement taken from the finite element 

model. Additionally, the distance between the aortic annulus and the level of the 

maximum diameter of the SOV was measured. (c) 3D perimeter measurements on the 

cross-section of the SOV in the front view and (d) in the top view. 
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(a)                                    (b) 

 

(c) 

Figure 2.3 The measurement of the ascending aorta (AA), sino-tubular junction (STJ), 

and coronary ostia (CO) (a) the maximum diameter of the STJ, AA, and the distance 

between the CO and aortic annulus were examined in the 2D coronal view (b) STJ and 

AA diameter measurement taken from the finite element model. Also, the projected 

distance between the CO and the aortic annulus plane was measured. (c) The spatial 

location of left CO with respect to the left aortic sinus. 

 

 The measurements obtained from the 3D aortic root models include: a) 2D 

diameters of the aortic annulus, SOV, STJ, and AA during diastole, which were directly 

measured on the 3D aortic root models using the anatomical planes defined above in 

order to compare with the 2D MSCT measurements. b) 3D perimeter-derived aortic root 

diameters, which were calculated by dividing the 3D perimeter measurements by the 

2 % 50 % 18 %

24 % 5 %
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value of π. c) the area of the aortic annulus, which was determined by creating a surface 

and calculating the surface area of the orifice using HyperMesh. 

2.2.5 Height Measurement on 3D Aortic Root Models 

 The measurement of the distance in the axial direction was conducted by 

projecting the landmark points representing each height level to the aortic annulus plane. 

Of note, the planes of SOV, STJ and AA may not be parallel, or co-axial, to the annulus 

plane, thus the distance was calculated using the mean projected distances of the 

landmarks to the annulus plane. The height of the CO was measured as the axial (vertical) 

distance from the inferior border (a landmark point) of the coronary artery to the aortic 

annulus plane (Figure 2.3). The height of the sinus was evaluated as the axial distance 

from the STJ to the aortic annulus plane. 

2.2.6 Spatial Location of Left CO 

 To determine the spatial location of left CO with respect to the left coronary sinus 

(LCS), we divided the LCS into 9 regions defined by 3 evenly spaced arc length distances 

along the longitudinal direction of the sinus and 3 evenly spaced arc length distances in 

circumferential direction. We counted the number of the left CO within each region to 

obtain its spatial probability distribution, which is important for prosthesis design and 

pre-procedural planning, but was not reported in the literature. 

2.2.7 Data Analysis 

 Statistical analysis was conducted using Minitab 15 (Minitab Inc., PA). Normality 

tests indicated that all measurement results followed normal distribution. All variables 

were thus reported as mean values with standard deviations.  Linear regression analysis 

and Bland-Altman plots were used to compare the aortic root measurements by 2D 

MSCT images and 3D FE models. Paired t tests and Pearson correlations were used to 

compare the difference in annulus diameters obtained from 2D MSCT images and 3D 
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models. Analysis of Variance (ANOVA) tests with Tukey comparison were performed to 

determine the significant difference between various height levels. Significance was 

determined by a p-value of 0.05 or less. 

 Intra-observer and inter-observer variability of annulus measurements were 

evaluated by absolute difference between measurements. For intra-observer variability 

analysis, fifteen patients were randomly selected from our dataset and the aortic annulus 

diameter was measured twice for each patient by one observer.  For inter-observer 

variability analysis, the same fifteen patients were used and the aortic annulus diameter 

was measured for each patient by 2 observers blind to clinical information. 

2.3 Results 

2.3.1 Patient Information 

 A total of 94 patients (55 males and 39 females) were included in this study. The 

average age of the patients was 56 ± 12 years.  The age distribution of the study 

population was such that there were 28 patients in each of three age groups (< 50, 50 - 60, 

and 60 - 70), and 10 patients in age 70 + group. 

2.3.2 Aortic Root Diameters by 2D MSCT and 3D FE Models 

 Comparisons of aortic root diameters directly measured in short axes using 2D 

MSCT images and 3D models were shown in Table 2.1, and Figure 2.4. Pearson 

correlation tests (Table 2.1) and linear regression analysis (Figure 2.4) indicated that in 

general there was very good agreement between all variables by the two methods. The 

results of paired t test (Table 2.1) and Bland-Altman analysis (Figure 2.4) showed that 

difference in the mean maximum annulus diameter and mean SOV diameter between the 

two methods was slightly larger than the other measurements.  
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Table 2.1 Comparisons of aortic root diameters between 2D MSCT and 3D FE models.  

Aortic Root 

Characteristics 

2D MSCT 

(mm) 

3D Model 

(mm) 

r 

Value 

Bias 

(mm) 

p 

Value 

Max. Annulus Diameter 27.1 ± 3.0 26.9 ± 3.0 0.94 0.24 0.035 

Min. Annulus Diameter 21.8 ± 2.5 21.8 ± 2.7 0.93 0.08 0.466 

Average Annulus 

Diameter 
24.5 ± 2.6 24.3 ± 2.8 0.96 0.16 0.061 

SOV Diameter 33.0 ± 4.1 32.7 ± 3.7 0.95 0.27 0.051 

STJ Diameter 28.8 ± 3.8 28.7 ± 3.3 0.94 0.08 0.559 

AA Diameter 29.7 ± 3.9 29.9 ± 3.6 0.93 -0.18 0.226 

Footnote: r value is coefficient of correlation, sinus of Valsalva (SOV), sino-tubular 

junction (STJ), ascending aorta (AA) 
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 (a)                                    (b) 

 

 (c)                                    (d) 

 

 (e)                                    (f) 
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 (g)                                    (h) 

 

 (i)                                    (j) 

Figure 2.4 Correlations of aortic root measurements in short axes between 2D MSCT and 

3D FE models by linear regression analysis and Bland-Altman analysis: (a) and (b) 

maximum aortic annulus diameter, (c) and (d) minimum aortic annulus diameter, (e) and 

(f) the sinus of Valsalva (SOV) diameter, (g) and (h) the sino-tubular junction (STJ), and 

(i) and (j) the ascending aorta (AA). The dash line in linear regression plots indicates the 

trendline. The middle dash line in Bland-Altman plots represents the mean, the upper line 

represents + 2 SDs, and the lower line represents - 2 SDs. 
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 The difference between maximum and minimum aortic annulus diameters by 3D 

models and 2D MSCT was 5.1 mm and 5.3 mm respectively. Paired t test results showed 

that the maximum and minimum annulus diameters were significantly different from 

each other (p < 0.001), which confirmed an oval shape of the aortic annulus [110].  

Additionally, intra-observer and inter-observer variability of the annulus diameter 

measurements using 3D models was 0.5 ± 0.8 mm and 0.4 ± 0.8 mm by examining 15 

patients. It should be noted that observed findings in this chapter cannot be generalized to 

other institutions. Each institution has to assess its own intra/inter-observer variability. 

2.3.3 Aortic Root Diameters Derived Using Perimeter Measurements on 3D Models 

 Aortic annulus diameters calculated from perimeters of 3D models as well as 

relevant studies in the literature were listed in Table 2.2. The 3D perimeter-derived aortic 

annulus diameter was 24.9 ± 2.6, which was slightly larger than the average annulus 

diameter of the maximum and minimum axes (24.3 ± 2.8 mm) (Figure 2.5a&b). The 

average annulus sizes are 24.9 mm, 24.8 mm, and 25.6 mm for < 50, 50 - 60, and 60 - 70 

age groups respectively. 
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Table 2.2 Additional measurements of the aortic root geometry obtained in the present 

study and in the literature. 

Aortic Root 

Characteristics 

Present 

Study  

Tops 

[46] 

Stolzmann 

[52] 

Akhtar 

[113] 

Messika-

Zeitoun [114] 

Schultz 

[115] 

Delgado [116, 

117]  

(n = 94) 
(n = 

150) 
(n = 100) (n = 25) (n = 45) (n = 75) (n = 90) 

Diameter (mm) 
    

   

Annulus 
24.9 ± 2.6 

* 

24.9 ± 

2.6 
23.0 ± 3.1 27.2 ± 4.0 24.6 ± 2.4 24.1 ± 2.6 25.5 ± 2.5 

SOV 
34.8 ± 4.3 

* 

32.3 ± 

3.9 
33.5 ± 4.2 36.7 ± 5.3 N/A N/A 33.9 ± 3.3 

STJ 
28.8 ± 3.3 

* 

28.1 ± 

3.1 
25.9 ± 3.3 28.2 ± 4.7 N/A N/A 29.1 ± 3.2 

AA 
30.0 ± 3.6 

* 
N/A N/A 32.2 ± 5.8 N/A N/A N/A 

Height (mm) 
    

   

NCS 23.4 ± 3.0 

20.3 ± 

3.1 

N/A 

21.4 ± 2.4 

N/A N/A 22.2 ± 3.2 

LCS 22.2 ± 2.6 19.5 ± 2.9 N/A N/A N/A 

RCS 22.6 ± 3.2 19.0 ± 2.9 N/A N/A N/A 

Left CO 13.6 ± 2.9 
14.4 ± 

2.8 
14.9 ± 3.2 15.7 ± 2.6 N/A N/A 17.1 ± 2.5 

Right CO 16.9 ± 3.1 
17.2 ± 

3.3 
16.8 ± 3.6 15.6 ± 2.7 N/A N/A 18.7 ± 2.8 

SOV 15.9 ± 2.0 
17.2 ± 

2.7 
N/A N/A N/A N/A 11.3 ± 1.7 

Annulus perimeter 

(mm) 
78.2 ± 8.2 N/A N/A N/A N/A 76.3 ± 6.6 N/A 

SOV perimeter (mm) 
109.3 ± 

13.5 
N/A N/A N/A N/A N/A N/A 

Annulus area (mm2) 
476.3 ± 

98.7 
N/A N/A 

670.0 ± 

170.0 
N/A N/A N/A 

Footnote: ascending aorta (AA), sino-tubular junction (STJ), sinus of Valsalva (SOV), 

coronary ostia (CO), non-coronary sinus (NCS), left coronary sinus (LCS), right coronary 

sinus (RCS).  

*Data were calculated from the perimeters of 3D measurement divided by π. 
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(a)                                    (b) 

 

(c)                                    (d) 

Figure 2.5 Correlations between the average aortic annulus diameter of maximum and 

minimum axes using 3D models and perimeter-derived aortic annulus diameter by (a) 

linear regression analysis and (b) Bland-Altman analysis. Correlations between the direct 

SOV diameter measurement using 3D models and perimeter-derived SOV diameter by 

(c) linear regression analysis and (d) Bland-Altman analysis. The dash line in linear 

regression plots indicates the trendline. The middle dash line in Bland-Altman plots 

represents the mean, the upper line represents + 2 SDs, and the lower line represents - 2 

SDs. 

 

 In this study, the mean 3D perimeter-derived SOV diameter was 34.8 mm, which 

was larger than the short axis view measurement (32.7 mm) on 3D models (Figure 

2.5c&d). The maximum (SDmax) and minimum (SDmin) diameters of the SOV (Figure 

2.2c&d) were 36.7 ± 4.6 mm, 28.1 ± 3.1 mm, and 3D perimeter-derived STJ and AA 

diameters were 28.8 ± 3.3 mm and 30.0 ± 3.6 mm, respectively. One-way ANOVA test 
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results showed that the maximum diameter (SDmax) of the SOV was significantly (p < 

0.001) larger than those of the STJ and AA. Note that the cloverleaf geometry of the SOV 

was considered for the measuring of the SOV perimeter and diameter (Figure 2.2c and 

2.2d). 

2.3.4 CO Height and Sinus Height on 3D Models 

 Measuring from full 3D models, the mean heights of the NCS, LCS and the right 

coronary sinus (RCS)  were 23.4 ± 3.0 mm, 22.2 ± 2.6 mm, and 22.6 ± 3.2 mm 

respectively. One-way ANOVA test results suggested that there was no statistically 

significant difference in height between sinuses (p = 0.385). In our patient cohort, 86% 

have a lower height of the left CO than that of the right CO. The mean heights of the left 

and right COs were 13.6 ± 2.9 mm and 16.9 ± 3.1 mm with ranges from 7.2 mm to 22.9 

mm and from 10.2 mm to 24.9 mm respectively. Paired t test results showed that there 

was a significant difference (p < 0.001) in the distance from the annulus between left and 

right CO. 

2.3.5 Spatial Location of Left CO 

 The spatial location of left CO with respect to the left aortic sinus was assessed 

using the 3D aortic root models. As shown in Figure 2.3c, the left CO was predominantly 

located in the upper right region (4 combined areas in the figure) of the LCS, which was 

adjacent to the NCS. In approximately 20-25 % of the patients, the locations of the CO 

were close to the commissures. For those patients, the possibility of the occlusion of the 

CO during the TAVI intervention might be higher. 

2.4 Discussion 

 Imaging modalities such as 3D echocardiography and 2D MSCT scans, which 

allow a full 3D rendering of anatomic geometries, are being increasingly utilized as 

diagnostic tools. In this chapter, we presented, to our knowledge, the first dimensional 
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analysis of the aortic root using full 3D models reconstructed from clinical 64-slice CT 

scans. 

2.4.1 Comparisons of Aortic Root Diameter Measurements by 2D MSCT and 3D FE 

Models 

 Overall, the comparisons between 2D MSCT and 3D model suggested that the 

mean measurements for all variables had good correlations (Table 2.1 and Figure 2.4). 

However, Bland-Altman analysis showed the mean difference between the two methods 

ranged from 0.08 mm to 0.27 mm and the width of 95 % confidence interval was 

approximately 5 mm. The main source of bias between the two methods could be the 

orientation and position of the cutting planes chosen for aortic root measurements. The 

advantage of using 3D models was that anatomical features of the aortic root, such as the 

annulus, the prominent points of the sinuses, and the boundaries of the CO and sinuses, 

can be easily identified on a full 3D geometric model. This feature could help locate the 

cutting plane for a specific aortic root measurement. 

2.4.2 Aortic Root Diameters Derived Using Perimeter Measurements on 3D Models 

 It is now well accepted that the aortic annulus in diastole is of an oval shape 

instead of a circular one [38]. However, the current TAVI devices, i.e., the Edwards 

SAPIEN valve and the Medtronic CoreValve devices, have a symmetric circular shape. 

Thus, for the TAVI sizing, the perimeter of the circular stent should match the perimeter 

of the elliptical annulus. To estimate the annulus perimeter, the averaged diameter from 

the coronal and sagittal views or the maximum and minimum axes was often used [115]. 

This study found that the 3D perimeter-derived aortic annulus diameter was slightly 

larger (0.56 mm) than the average annulus diameter of the maximum and minimum axes 

(Figure 2.5a&b). Even though the choice of perimeter vs. diameter in TAVI sizing 

remains speculative, the perimeter measured in 3D models should, in theory, provide 
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more accurate and complete geometric measurements than the diameter measurements on 

2D slice planes. 

 In this study, we observed several differences in the diameter of SOV between the 

results of our study and those of other studies. The differences in 3D and 2D 

measurement methods may explain these discrepancies. The long axis or short axis 2D 

view of the aortic root is usually used to measure the maximum diameter of SOV [110, 

112]. However, as the three sinuses are about 120 degrees apart from each other, the 

long-axis 2D view plane can only cut through one sinus (see Fig. 3 of Tops et al. [110]). 

Therefore, a single 2D measurement of the diameter of the SOV in a long-axis view plane 

may be inaccurate and misleading. In addition, the largest diameter of the SOV in a short-

axis 2D view must be interpolated from the review of multiple adjacent planes proximal 

and distal to the actual plane of the largest diameter. In our study, however, we can 

measure the SOV perimeter as well as maximum (SDmax) and minimum (SDmin) SOV 

diameters directly in 3D with the consideration of the cloverleaf geometry of the SOV 

(Figure 2.2c and 2.2d). In addition, it was observed that the shape of the STJ and AA was 

almost circular, which could explain the similarity between the current diameter 

measurements and those obtained in the 2D coronal view (Table 2.2). 

 For CO height measurement, Tops et al. [110] reported that the mean distances 

between the left and right COs and the annulus were 14.4 mm and 17.2 mm, respectively, 

which were slightly larger than our measurements. A wide variation in distance was also 

found in the study by Tops et al. [110], ranging from 7.1 to 22.7 mm. The left and right 

CO heights obtained in this study (Table 2.2) were lower than the values reported in other 

studies that used 2D MSCT techniques [52, 110, 112]. This discrepancy could be due to 

the fact that, compared to those studies where a single 2D long-axis plane was utilized to 

measure the distance between CO and aortic annulus, it was easier to detect the inferior 

boundary of the CO from the 3D reconstructed aortic valve models. Meanwhile, the 

heights of aortic sinuses measured in this study (Table 2.2) were higher than the values 
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found in the literature [52, 110, 112]. Similarly, the superior borders of the aortic sinuses 

might be detected more easily from the 3D reconstructed aortic valve models than on a 

2D long-axis plane. 

2.4.3 Limitations 

 The aortic root geometry during systole was not considered. However, Tops et al. 

[110] and Kazui et al. [118] found that no significant differences in annulus diameter 

were observed between diastole and systole. Another limitation of the present study was 

that no patients with severe aortic stenosis or bicuspid aortic valve were incorporated. As 

a pilot study to use a 3D model, we chose to exclude the aortic stenotic and BAV patients 

to simplify our data analysis. 

2.5 Summary 

 In this chapter, full 3D aortic root models reconstructed from clinical MSCT 

scans of 94 patients were used to perform dimensional analysis of the aortic root 

geometry in diastole. Similar dimensional measurements were obtained from the 3D 

models and 2D MSCT scans. The main source of differences between the two methods 

could be the orientation and position of the cutting planes chosen for aortic root 

measurements. Moreover, the 3D perimeter-derived annulus and SOV diameters were 

different from the direct diameter measurements on short axis views. It was noted that the 

perimeter measurements could account for the non-circular geometries of the annulus and 

the SOV, which might represent more accurate dimension estimations. This chapter also 

indicated that the left CO is predominantly located in the upper right region of the left 

coronary sinus. Since anatomical features of the aortic root can be easily identified on a 

full 3D geometric model, more complete information could be obtained. 
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CHAPTER 3 

DEVELOPMENT OF A PATIENT-SPECFIC FE MODEL OF TAV 

DEPLOYMENT 

 

 In the previous chapter, multi-slice computed tomography (MSCT) was selected 

as the imaging modality for the reconstruction and measurement of the aortic root 

geometry due to its availability and spatial resolution. In this chapter, we explored the 

possibility of using aortic geometries reconstructed from MSCT scans to create 

computational models of TAV stent deployment. In order to determine the necessary 

anatomical structures that should be included into the models, three initial aortic root 

geometries were analyzed: (a) aortic root geometry directly reconstructed from MSCT 

scans, (b) aortic root geometry at the rapid right ventricle pacing phase, and (c) aortic 

root geometry with surrounding myocardial tissue.  

 Overall, the results of this chapter suggested that computational models could be 

used to quantify the biomechanical interaction between the transcatheter aortic valve 

(TAV) stent and the stenotic aortic valve during TAV intervention. The results of this 

chapter were published in [75]. 

3.1 Introduction 

 During TAVI intervention, the interventional cardiologist does not have direct 

access to the calcified aortic valve, and must rely on the interaction between the TAV 

stent and the host tissue to maintain proper device positioning and function.  Many of the 

adverse effects [119-122] seen in clinical trials, such as impairment of coronary flow, 

cardiac tamponade, stroke, peripheral embolism, aortic injury, paravalvular leak and 

access site injury [40, 123], can be explained from the biomechanics perspective. For 

instance, excessive radial expansion force of the TAV stent may cause aortic injury, 
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while insufficient force may lead to paravalvular leakage and device migration.  Improper 

TAV positioning can also cause occlusion of the coronary ostia (CO). Thus, a 

quantitative understanding of the biomechanics involved in the TAV intervention is 

critical for the success of this procedure. 

 Due to the complex geometry, mechanical properties and contact between the 

TAV stent and the aortic root in TAV intervention, integrated experimental and 

computational methods are necessary to evaluate the biomechanical response. Finite 

element (FE) analysis has been utilized to study the biomechanics of the aortic root [83, 

103, 124-126] or TAV devices [68-70, 127, 128] individually. However, the 

biomechanical interaction between the stenotic aortic valve and TAV stent has been 

largely unexplored, and therefore is the focus of the present chapter. Specifically, patient-

specific FE models of aortic roots were reconstructed from multi-slice computed 

tomography (MSCT) scans, and stent expansion during TAV deployment was simulated. 

Contact force between the stent and aortic root, as well as stress and strain changes in 

aortic tissue due to the stent expansion were analyzed. 

3.2 Methods 

3.2.1 Patient-Specific Aortic Root Geometry 

 Full phase cardiac MSCT scans were collected from patients at Hartford Hospital 

(Hartford, CT). Institutional Review Broad approval to review de-identified images was 

obtained for this study. One stenotic patient with a tricuspid aortic valve and an aortic 

annulus size of 21 mm was identified from the database. Severe calcification was found 

in the leaflets of the patient. The MSCT examination was performed on a GE LightSpeed 

64-channel volume computed tomography scanner. In general, a total of 2000 slices of 

images with thickness of 0.625 mm were collected for the whole cardiac cycle [45]. 

MSCT images in systole were imported into Avizo 6.3 software (VSG, Burlington, MA) 
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for 3-dimensional (3D) reconstruction and evaluated using a window width of 950 and -

50 Hounsfield units. Aortic root and left ventricle were identified and separated from the 

rest of the chest images to create a 3D representation. A FE mesh of the 3D aortic root 

model was generated using HyperMesh (Altair Engineering, Inc., MI) software (Figure 

3.1). Three-dimensional solid elements (eight-node hexahedral C3D8I and four-node 

tetrahedral C3D4 elements) were used to model the aortic root, leaflets, and myocardium. 

 
Figure 3.1 (a) MSCT images of the aortic valve in long-axis view overlapped with (b) 

automatic-segmented interior surface mesh of the aortic valve and (c) the final 3D finite 

element aortic valve model, (d) TAV stent deployment inside the aortic roots with AS, 

and (e) TAV stent and balloon. 
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 In TAVI intervention, a rapid ventricular pacing is introduced during the TAV 

stent deployment [129], aortic pressure is thus reduced from 80-120 mmHg to 0-20 

mmHg. Consequently, the aortic root geometry reconstructed from MSCT scans under 

normal aortic pressure is different from the aortic root geometry during rapid pacing. 

Previous studies on patient-specific aortic wall stress showed that neglecting existing 

stress in CT-reconstructed geometry could lead to inaccurate prediction of wall stress and 

deformation in FE simulations[130, 131]. Thus, to estimate the aortic root geometry at 

the rapid ventricular pacing, we utilized the pressure vs. diameter relationship obtained 

from in-house inflation tests of human aortic roots (described in the Appendix A and 

published in [64]); and determined that about 10% strain could be induced by inflating 

the aortic root from 0 mmHg to 80 mmHg (Figure 3.2). Therefore, we uniformly applied 

-10% strain to the CT reconstructed aortic root geometry to approximate the rapid 

ventricle pacing geometry, which resulted in an aortic root with an annulus size of 19. 

 

Figure 3.2 Pressure-strain data (mean and standard error) of human ascending aortas 

under 200 mmHg (27 kPa) in circumferential (Circ) and longitudinal (Long) directions. 
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 Furthermore, it is known that the aortic root, in particular the aortic annulus, is the 

main component interacting with the TAV stent for its anchoring. The impact of the 

myocardium, affixed to the lower parts of the aortic sinuses of Valsalva, on the 

interactive force during TAV stent deployment is unclear. Thus, in this chapter, the 

myocardium surrounding the aortic root was included in the FE models to investigate 

whether the presence of myocardium would affect the biomechanical interaction between 

the aortic root and TAV stent (Figure 3.3b). In summary, we compared three initial 

geometries for the patient in this chapter: (a) aortic root geometry (size 21) directly 

reconstructed from MSCT scans, (b) aortic root geometry (size 19) at the rapid pacing 

phase, and (c) aortic root geometry (size 19) with surrounding myocardial tissue. 

 

Figure 3.3 The presence and severity of aortic leaflet calcifications were evaluated on 

MSCT images: (a) extensive calcified spots (indicated by yellow arrows) in all leaflets. 

(b) Finite element models of the aortic roots with myocardium. 

 

3.2.2 Patient Information 

 The patient with AS was a 77-year-old male. Aortic annulus diameters and CO 

height were measured from MSCT scans. The aortic valve annulus was defined at the 

lowest level of the insertion of the valve cusps into the aortic root (Figure 3.1a). The 
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height of the CO was measured as the axial (vertical) distance from the inferior border of 

the coronary artery to the aortic annulus plane. For this patient, the maximum and 

minimum aortic annulus diameters before the TAV stent deployment were 23.6 mm and 

17.7 mm respectively. The heights of left and right CO were 10.7 mm and 16.4 mm 

respectively. In one of our previous studies [45], a dimensional analysis of the aortic root 

geometry of 94 patients was performed using full 3D aortic root geometric models 

reconstructed from clinical MSCT scans. We found that the aortic root dimensions of the 

patient used in the current study fell in the typical range of the aortic measurement results 

obtained in the previous study, thus, this patient is representative in terms of his anatomic 

dimensions. The area of calcified leaflets quantified from the MSCT images was 127.3 

mm
2
. It was also observed from the MSCT images (Figure 3.3a) that for this patient, 

calcified tissue was at the bottom of all three leaflets in the vicinity of the leaflet 

attachment line. 

3.2.3 TAV Stent Geometry and Material 

 Three-dimensional solid elements (eight-node hexahedral C3D8I) were used to 

model the TAV stent, while three-dimensional shell elements (four-node reduced 

quadrilateral S4R elements) were used to model the balloon (Figure 3.1e). The stent and 

the balloon were positioned such that the stent was coaxial with the aortic root and 

approximately one half of the stent was below the aortic annulus based on the 

manufacturer’s guideline for Edwards SAP EN XT TAV device deployment [132]. The 

stent was modeled with the properties of cobalt-chromium [133] with a Young’s modulus 

of 243 GPa and a Poisson ratio of 0.3. The stent model had a height of 14.5 mm and a 

thickness of 0.5 mm. The TAV leaflets were not included in the model because the 

effects of TAV leaflets on biomechanical interaction between the TAV stent and native 

tissue during the stent expansion were negligible. 
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3.2.4 Constitutive Models of Aortic Tissue 

 An anisotropic hyperelastic material model was adopted to characterize 

mechanical behaviors of the aortic tissues (i.e., aortic leaflets, aortic sinus, ascending 

aorta and surrounding myocardium). The model is based on the fiber-reinforced 

hyperelastic material model proposed by Holzapfel et al. [99, 134], which has been 

shown to accurately capture the behavior of blood vessel inflation under internal 

pressurization. Briefly, the aortic tissues are assumed to be composed of a matrix material 

with two families of imbedded fibers, each of which has a preferred direction. The fiber 

directions (theta) can be mathematically described using two unit vectors. The strain 

invariant   ̅ is used to describe the matrix material; and the strain invariant   i̅ is used to 

describe the properties of the fiber families.   i̅ is equal to the squares of the stretches in 

the fiber directions. The strain energy function W can be expressed as  

      0{exp[ 0 (  ̅- )]- } 
k 

 k 
∑ [exp {k [   ̅ ( -  )  i̅- ]

 
} - ] 

i   
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 , i  ,          (3.1) 

where, C10, C01, k1, k2 and D are material constants. C10 and C01 are used to describe the 

matrix material. D is the material constant that introduces the near incompressibility, 

while k1 is a positive material constant with the dimensions of stress and k2 is a 

dimensionless parameter.  n addition, a dispersion parameter   was used to describe the 

distribution of fiber orientation.  hen   0, the fibers are perfectly aligned (no 

dispersion).  hen   0.  , the fibers are randomly distributed and the material becomes 

isotropic. The anisotropic hyperelastic material model was implemented into Abaqus 6.10 

(SIMULIA, Providence, RI) with a user sub-routine VUMAT. Local coordinate systems 

were defined for each leaflet, sinus, and myocardium to include fiber orientations for 

each region. 

3.2.5 Material Parameters Obtained from Inverse FE Method 

 Load-controlled biaxial tests of healthy human aortic valve leaflets, aortic sinuses 

and ascending aorta (80-year-old female) were reported by Martin et al. [53]. In addition, 
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an in-house load-controlled biaxial test of healthy human myocardium (79-year-old 

female) was used.  Briefly, a square specimen (about 25 mm in length) of the posterior 

side below the coronary sinus of the left ventricle wall was cut out and sliced into three 

layers: endothelium, myocardium and epicardium. The thickness of the endothelium, 

myocardium, and epicardium are 1.99, 2.47 and 2.17 mm, respectively. In this chapter, 

the myocardium mechanical properties were generalized by obtaining only the 

myocardium layer to present the entire left ventricle wall. To determine the passive 

characteristics of the myocardium, the specimen was submerged and tested in a Ca2+-

free saline solution with EGTA (a chelating agent with a high affinity for Ca2+) and 

0.1M papaverine. Biaxial testing was carried out according to the methods presented in 

Sacks and Sun [135]. The longitudinal and circumferential axes were aligned with the 

apex to base and circumferential directions of the heart, respectively. The specimen was 

preconditioned for 20 cycles with a maximum load of 80g in each direction.  

 An inverse FE method was used to estimate the model parameters by comparing 

FE simulated tissue responses with the experimental data. Briefly, in this procedure, an 

equal-biaxial loading protocol was applied to a single solid element to simulate the 

responses of aortic tissue. The material parameters of the constitutive model of Eqn. (1) 

were obtained by iteratively minimizing the difference between stress-strain relationships 

extracted from the single element simulation and the experimental data. This process is 

automatically realized by using a Matlab code that executes the simulation, extracts data 

from simulation output files and performs optimization of the parameters.   

3.2.6 Modeling of Calcified Leaflets 

 Leaflet calcification of the patient in this chapter had distinct and regional 

calcified tissue formations (Figure 3.3) that can be observed from the MSCT images. The 

focal calcified regions of the leaflets were modeled in the FE models according to their 

size, thickness, and location based on the MSCT images. Calcified tissues were modeled 
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with the properties of hydroxyapatite with a Young’s modulus of 60 GPA and a Poisson 

ratio of 0.3. 

3.2.7 Boundary Conditions 

 A displacement-controlled deformation was prescribed to the balloon in its radial 

direction so that it expanded the TAV stent to an outer diameter of 23 mm. The 

displacement-controlled condition was utilized based on the clinical observation that 

most of the Edwards SAPIEN stents used remained circular in cross-section after 

deployment, even within heavily calcified native valves[136]. The top of the ascending 

aorta was constrained to allow only rotational degrees of freedom. Friction coefficients 

between TAV stents and stenotic aortic roots are currently unknown. Thus, in this 

chapter, frictional coefficient of 0.1 was assumed based on the study by Vad et al. [137] 

on a self-expanding endovascular stent-graft. To evaluate the effect of the mesh density 

on simulation results, a mesh sensitivity study was performed on the FE models. 

3.3 Results 

3.3.1 Material Models 

 The best-fitted material properties of aortic tissue as well as the corresponding 

biaxial test data are illustrated in Figure 3.4. The obtained material parameters are listed 

in Table 3.1. It can be seen in Figure 3.4 that there was very good correlation between 

simulation and biaxial results. From the biaxial results it can be seen that the sinus and 

aortic leaflet tissues had stiffer mechanical response in the circumferential direction, 

while the ascending aorta was stiffer in the longitudinal direction. This intrinsic material 

property was reflected in the material model by the angle (theta) between collagen fibers 

and the circumferential direction, which was larger for the ascending aorta in Table 3.1. 
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Figure 3.4 Equal-biaxial results (circles) of the (a) aortic sinus, ascending aorta, leaflet, 

(b) myocardium in circumferential (Circ) and longitudinal (Long) directions and their 

responses predicted by finite element simulations (lines). 

 

Table 3.1 Material parameters of healthy human aortic sinus, ascending aorta, leaflet, and 

myocardium. 

 C10 C01 K1 K2 κ D Theta (°) 

Sinus 1.7553 13.7077 10.5507 80.3790 0.0006 0.0005 20.06 
Ascending aorta 4.1755 3.4649 3.7711 15.9276 0.0864 0.0005 70.95 

Leaflet 0.9627 6.3928 12.7250 48.6769 0.0711 0.0005 28.04 

Myocardium 0.0374 15.3875 6.0798 98.3666 0.1440 0.0005 6.78 

 

3.3.2 Simulation Results 

 The deformed leaflets and aortic root of the patient after the maximum stent 

deployment are shown in Figure 3.5 and Figure 3.6. Aortic leaflets were pushed behind 

the TAV stent. No severe leaflet overhanging or obstruction of CO was observed. The 

distance between the left CO and the leaflet free edge was found to be 3.6 mm (as 

indicated by the double-sided yellow arrow in Figure 3.6b). The maximum and minimum 

aortic annulus diameters after the TAV stent deployment were 24.6 mm and 23.1 mm 

respectively. Also, no significant change in CO heights was observed before and after 

TAV stent deployment.  
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Figure 3.5 Side views (a) and top views (b) of deformed native valve leaflets of the 

patient after the maximum stent deployment. 

 

 

Figure 3.6 (a) Side view of deformed aortic root and left ventricle of the patient after the 

maximum stent deployment. (b) Double-sided yellow arrow shows the distance between 

the left CO and deformed leaflet free edge. 

 

 Contact forces between the stent and aortic root are listed in Table 3.2.  Contact 

forces of the aortic root models reconstructed directly from MSCT scans (size 21) were 
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significantly lower than those of the scaled aortic root models (size 19). Furthermore, 

contact forces increased slightly with the inclusion of myocardium to the model. 

Similarly, as listed in Table 3.2, maximum stresses and strains of the original aortic root 

models were lower than those of the scaled models. The presence of myocardium induced 

slightly higher stresses and strains in the aortic root.  

 

Table 3.2 Mechanical responses of the aortic root at maximum TAV stent expansion. 

Mechanical Responses 
Geometry 

#1 #2 #3 

Contact normal force (N) 27.64 125.70 149.02 
Contact shear force (N) 2.68 11.09 12.58 

Peak MPS in the calcium deposit regions of leaflets (MPa) 115.2 564.1 641.2 

Peak MPS in leaflet tissue within 1 mm vicinity of the calcium 

deposits  (MPa) 

5.37 36.49 44.41 

Peak MPS in leaflet tissue beyond 1 mm vicinity of the calcium 

deposits (MPa) 

3.51 13.03 13.03 

Average MPS in leaflet tissue, excluding the calcium deposit 

regions (MPa) 

0.50 2.67 2.91 

Average MPS in aortic sinus tissue* (MPa) 0.17 0.86 0.87 

Footnote: #1 is the initial aortic root geometry (size 21) which is reconstructed directly 

from MSCT images, #2 is the scaled aortic root geometry (size 19) which represents the 

rapid pacing geometry, and #3 is the scaled aortic root geometry (size 19) with the 

addition of surrounding myocardium. * averaged over the aortic sinus elements below the 

commissures. MPS is the Maximum Principal Stress in the unit of MPa. 

 

 The stress distribution in the aortic leaflets, as well as the deformed leaflets and 

stent geometries, are shown in Figure 3.5 and Table 3.2. Generally, highest stresses were 

observed at the calcified spots of the leaflets as well as the transition region between 

calcified and native tissues (Table 3.2). High stress and strain was also observed at the 

leaflet-root attachment lines and at the aortic wall between leaflets where the aortic root 

contacted the stent struts. The top views of the deformed aortic root cross-sections at 

maximum stent deployment are shown in Figure 3.7. Due to the calcified leaflets, the 

deformed shape of the aortic annulus of the patient was not circular and thus, gaps can be 

seen between the stent and annulus, which indicated a potential of paravalvular leak. 
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Figure 3.7 Sectional view of the deformed aortic roots of the patient at the maximum 

stent deployment showed the possible paravalvular leak locations. 

 

3.3.3 Mesh Sensitivity Analysis 

 The element number of the aortic root and leaflets was increased from 5408 to 

21632 to 86520. Mesh sensitivity was also conducted varying the number of elements of 

the stents from 735 to 5880. There was approximately 0.8 % difference in peak contact 

normal force between the original and finest mesh. The differences in average maximum 

principal stress and strain in the aortic root between the original and finest mesh were 

roughly 5.1% and 3.8% respectively. 

3.4 Discussion 

 Successful TAV deployment and function are heavily reliant on the aortic root-

TAV stent interaction. Since the human aortic valve has a large variation of anatomic 

structures, e.g. different annulus size, sinus height, CO location [46, 52, 138] and tissue 

stiffness [53], determination of appropriate interaction forces between the TAV and the 

native tissue using either in vivo or ex vivo measurements is a challenging task.  In this 

chapter we conducted a FE analysis of one patient in TAV intervention and quantified the 

associated interactive forces, stresses and strains in this procedure. 
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 Stress analysis of patient-specific vascular structures commonly assume that the 

reconstructed in vivo geometries derived from biomedical images are stress–free, 

although they are in a pre-deformed state due to the presence of arterial pressure [139]. In 

this chapter, the simulation results clearly demonstrated that there was a significant 

difference in stress, strain, and contact forces between the aortic root models directly 

reconstructed from MSCT scans (size 21) and the scaled aortic root models (size 19) for 

the rapid ventricular pacing phase, which underscores the importance of choosing an 

appropriate initial aortic root geometry in FE simulation. It is noted that our scaled aortic 

root geometry is a rough approximation and will not be accurate at a patient-specific 

level. Ideally, 3D imaging modalities such as CT scans may be performed at the rapid 

pacing phase such that an accurate estimation of the aortic root geometry at 0-20 mmHg 

can be obtained. Alternatively, an inverse FE method could be used to deduce the aortic 

root geometry at the rapid pacing using the approach by Zhou et al. [139]. In addition, in 

the FE models we did not consider the aortic wall residual stress [140]. For AS patients 

the aortic root is heavily calcified. The impact of such calcification on the arterial wall 

residual stress is currently unknown. However, the residual stress, if included in the FE 

model, should make the aortic root more compliant. 

 The simulation results also indicated that the surrounding myocardium 

contributed to the increase of the mechanical responses during TAV deployment. We 

noted that the passive myocardium tissue in the aged patients was much more compliant 

compared to the aortic root tissues. Thus, its contribution to the biomechanical interaction 

might be secondary. However, in our simulations the active contraction from 

myocardium was not considered, which, if considered, should increase the interactive 

forces imposed on the TAV stent during the cardiac cycle.  

 Calcified leaflets are removed during a surgical valve replacement procedure. In 

current TAV interventions, however, the leaflets are not removed, but rather pushed aside 

by the TAV stent. Whether these leaflets have any mechanical impact on the TAV 
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intervention is currently unclear. It has been suggested that these calcified leaflets be 

removed prior to the TAV intervention by a separate minimally invasive means [141]. 

Our simulation results showed that high stress concentrations (Table 3.2) were seen 

around the calcified regions in the leaflets as well as at the attachment lines of leaflets 

and the aortic sinuses. These high stress concentrations indicated that the leaflets carried 

a substantial amount of loads, thus, helped secure the stent in position [142]. However, 

the high stress concentrations around the calcified regions also suggested a potential of 

tissue tearing and breakdown of calcium deposits in these regions, which might cause an 

increased risk of stroke [132]. 

3.4.1 Limitations 

 No rupture or damage mechanism has been incorporated into our FE model. The 

peak stresses observed in the calcified tissue are high enough to cause tissue tearing and 

breakdown of calcifications. Fracture of the calcification could reduce the overall 

stiffness of the aortic root and leaflets, thus, the radial force that the TAV stent exerted on 

the aortic root could decrease. The angle of collagen fiber orientation was assumed to be 

a constant; and was determined from optimization of material parameters against biaxial 

test data. Future work will be needed to obtain the collagen fiber orientation from 

histology analysis of aortic and left ventricle tissues. No study was found in the literature 

[143-145] on the material stiffness of aortic leaflet calcification. Therefore, we used the 

properties of hydroxyapatite to model the calcification rocks. Additional experimental 

data is required to verify our assumption and the values we used in our simulations. 

3.5 Summary 

 Patient-specific FE models of stenotic aortic roots were reconstructed from MSCT 

scans; and TAV stent deployment was simulated. The results showed that mechanical 

responses of the aortic root model directly reconstructed from MSCT scans were 
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significantly lower than those of the model at the rapid ventricular pacing phase. In 

addition, inclusion of the myocardium slightly increased the mechanical responses. It was 

observed that maximum stresses and strains were in the region of leaflet calcification, 

which could help secure the stent in position. Moreover, these elevated stresses during 

TAV stent deployment indicated a possibility of tissue tearing and breakdown of calcium 

deposits, which might lead to an increased risk of stroke. The potential of paravalvular 

leak or occlusion of coronary ostia can be evaluated from simulated post-deployment 

aortic root geometries. The developed computational models could be a valuable tool for 

pre-operative planning of TAV intervention and facilitate next generation TAV device 

designs. 
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CHAPTER 4 

ANALYSIS OF A TAVI CASE WITH AORTIC ROOT RUPTURE 

 

 In the previous chapter, a computational methodology was developed to simulate 

TAV stent deployment process. In this chapter, the modeling techniques such as 

geometry reconstruction of detailed anatomical structures, fitting of the material 

parameters, and boundary conditions of the simulation, were further improved. 

Subsequently, the developed method was utilized to analyze the mechanism of a clinical 

adverse event associated with TAVI.  

 Aortic root rupture is one of the most severe complications of TAVI. The 

mechanism of this adverse event remains mostly unknown. FE simulations were used to 

obtain a better understanding of the biomechanical interaction between the tissue and 

stent for patients with a high risk of aortic rupture. We simulated the stent deployment 

process of a TAVI patient with high aortic rupture risk using finite element method. 

Simulation results were evaluated for the risk of aortic root rupture, as well as coronary 

artery occlusion, and paravalvular leak. 

 Overall, the results of this chapter suggested that since a systematic study of a 

large patient cohort of aortic rupture is currently not available (due to the low occurrence 

rate) to clearly understand underlying rupture mechanisms, case by case engineering 

analysis is recommended for evaluating patient-specific aortic rupture risk. The results of 

this chapter were published in [80]. 

4.1 Introduction 

 Despite the clinical success of the TAVI, there are still many complications 

associated with this procedure. One of the most severe complications of TAVI is aortic 

root rupture [31, 32, 146-149], which could lead to cardiac tamponade and subsequent 
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fatal outcomes. Since aortic root rupture happens rarely (a reported risk of less than 2 % 

[31, 114, 150]), it is difficult to identify its predictors. As a result, the mechanism of this 

adverse event remains largely unknown; and a better understanding of the biomechanical 

interaction between the aortic root and prosthesis is essential to prevent aortic root 

rupture in TAVI. The purpose of this chapter was to perform an engineering finite 

element (FE) analysis of TAVI clinical cases, in order to obtain a better understanding of 

the biomechanical interaction between the tissue and stent for patients with a high risk of 

aortic rupture. 

 Computational analysis has been carried out to evaluate the aortic root – 

transcatheter aortic valve (TAV) interaction from an engineering perspective [72, 74-76, 

151]. However, the validity of the simulation results was limited by the assumptions of 

material properties and boundary conditions. For example, no material failure criteria 

were incorporated in the previous models. Hence, the injury to aortic root tissue, such as 

aortic root rupture, was not investigated. Moreover, the balloon expansion process was 

simplified by either forcing uniform TAV stent expansion in the radial direction or 

applying constant pressure to the balloon interior. The mechanics between balloon and 

TAV stent could not be accurately characterized.  

 In this chapter, I simulated the stent deployment process of a TAVI clinical 

patient with high aortic rupture. The clinical case was a retrospective analysis of an actual 

TAVI aortic rupture case. Dynamic structural FE models were created using patient-

specific geometries segmented and reconstructed from patient pre-operative CT scans, 

which incorporated aged human aortic material properties with material failure criteria 

obtained from mechanical tests. A surface-based fluid cavity method was utilized to 

simulate the fluid-filled TAVI balloon expansion process for the TAV stent deployment 

into patient-specific calcified aortic roots. Size 23 Edwards SAPIENT TAV stent, which 

is the currently approved device in the United States, was implanted in the patient. 
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Simulation results were evaluated for the risk of aortic root rupture, as well as coronary 

artery occlusion, and paravalvular leak. 

4.2 Methods 

4.2.1 MSCT Image Acquisition 

  The MSCT examination (Figure 4.1) at the Columbia University Medical Center 

(New York, NY) was performed on a Toshiba 320-channel volume computed 

tomography scanner. Prior to MSCT angiography, prospective calcium score acquisition 

was performed (collimation 25 × 3.0 mm, rotation time 375 ms, voltage 120 kV, and tube 

current 500 mA). The temporal window was set at 75% interval after the R wave for 

electrocardiographically (ECG) triggered prospective reconstruction.  

 For MSCT coronary angiography, a collimation of 25-30 × 0.25 mm and a 

rotation time of 375 ms were used resulting in a temporal resolution of less than 200 ms. 

The tube current modulation was automated to a maximum of 800 mA at 120 kV. Images 

were obtained with helical scanning and ECG gating. A timing bolus of 20 cc bolus of 

Ultravist 370 contrast (Bayer Healthcare Pharmaceuticals, NJ) was administered and 

followed by a 20 cc bolus of normal saline. A 1 s axial scan with a 1 s inter scan delay 

with a region of interest at the level of the ascending aorta was obtained until contrast 

density detected. 80 cc of Ultravist 370 contrast was administered via the antecubital vein 

at a flow rate of 5.0 ml per second using a Medrad Stellant dual headed injector (Medrad, 

Warrendale, PA). Data acquisition was obtained during an inspiratory breath hold of 

approximately 6-8 s with ECG gating. In general, a total of 9000 slices of images with 

thickness of 0.25 mm were collected for the whole cardiac cycle. 

4.2.2 Case Presentation 

 A 94-year-old female patient with a tricuspid aortic valve and an annulus size of 

19.6 mm was referred for TAVI procedure. Echocardiography revealed severe AS in the 
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non-coronary leaflet as well as the interior of the aortic root; only the left coronary leaflet 

could open during cardiac cycles. The pre-procedural MSCT scans (Figure 4.1) showed 

heavy calcification on the non-coronary leaflet, and one large calcified spot on the 

interior of the left coronary sinus at the level between the ostium of the left main stem 

and the aortic annulus entering the myocardium. A size 23 Edward SAPIEN TAV was 

implanted. During TAVI procedure, aortic root tearing happened and visualized below 

the left main coronary artery. 

 
Figure 4.1 Computed-tomography images of a TAVI patient showing aortic calcification. 

 

4.2.3 Patient-Specific Aortic Root Model 

 MSCT images in diastole were imported into Avizo 8.0 software (VSG, 

Burlington, MA) for 3-dimensional (3D) reconstruction and evaluated using a window 

width of 950 and -50 Hounsfield units. Aortic root was identified and separated from the 

rest of the chest images to create a 3D representation (Wang et al. 2011). HyperMesh 

software (Altair Engineering, Inc., MI) was used to generate FE mesh of the 3D aortic 

root model (Figure 4.2), which included aortic root, aortic leaflets, calcification, mitral-

aortic intervalvular fibrosa, anterior mitral leaflet, fibrous trigones, and left ventricle. 

Three-dimensional solid elements (eight-node hexahedral C3D8I, six-node pentahedral 

Calcification
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C3D6, and four-node tetrahedral C3D4 elements) were used to simulate the TAVI cases 

in ABAQUS explicit 6.13 (SIMULIA, Providence, RI) FE software. Calcification (Figure 

4.2) was modeled such that the volume of 3D elements in HyperMesh was similar to that 

was quantified using the material statistics tool in Avizo. Calcification was quantified 

with density greater than 130 Hounsfield units. 

 

Figure 4.2 The development of an aortic root model: (a) initial image segmentation in 

Avizo, (b) reconstructed models of aortic leaflets and calcification. For illustration 

purposes, the yellow geometry in my FE models represents the aortic root, the green 

geometry represents non-calcified aortic leaflets, and the red geometry represents 

calcification. 

 

4.2.4 Mechanical Testing of Heart Tissues 

 Details of the biaxial and uniaxial testing techniques were described in previous 

chapters. Briefly, in-house load-controlled biaxial tests of human aortic tissues were used 

to define the valve material properties. Biaxial testing was carried out according to the 

(a) (b)



www.manaraa.com

 74 

methods presented in Sacks and Sun [135]. The typical sample size in biaxial tests was 15 

mm by 15 mm. Twenty continuous cycles of preconditioning were performed to reduce 

tissue hysteresis. Each sample was tested at the maximum load possible without causing 

tissue damage. Tissue samples were assumed to be incompressible and planar. Material 

properties of the human ascending aorta, sinus, and leaflet were mostly averaged over 10 

biaxial test samples of each region.  

 Uniaxial tests (Figure 4.3) were conducted using dogbone-shaped samples of the 

aortic-mitral intravalvular fibrosa. The initial length and thickness of the sample was 

measured by a thickness gauge. The tests were carried out with the specimens submerged 

in saline solution at room temperature. To precondition the samples, 10 successive 

loading cycles were executed. Axial load was recorded during the entire test. The Cauchy 

stress was computed as axial load divided by the current cross-sectional area. The current 

transversal area was evaluated through the incompressibility condition. The strains were 

computed during the test by video tracking the displacements of the 2 optical markers 

placed in the center of the surface of the sample. 

 

   (a)    (b) 

Figure 4.3 (a) Uniaxial testing samples and (b) testing setup. 
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4.2.5 Material Models of Heart Tissues 

 The anisotropic hyperelastic Holzapfel-Gasser-Ogden material model [152] was 

adopted to characterize mechanical behaviors of the human heart tissues (i.e., aortic 

leaflets, aortic sinus, ascending aorta, mitral leaflet tissues, and myocardium). The details 

of the material models of the human heart tissues were described in the previous chapter. 

The biaxial test data of a human sinus sample and the best-fitted results using the two 

fiber model are shown in Figure 4.4. 

 

Figure 4.4 Experimental data (open circles) and curve-fitting results (red) of human (a 

and b) sinuses. 

 

 The isotropic hyperelastic Ogden material model [153] was used to characterize 

the mechanical properties of the human mitral-aortic intervalvular fibrosa and fibrous 

trigones obtained from uniaxial testing. Aortic valve calcification of the patients in this 

chapter had distinct and regional calcified tissue formations that can be observed from the 

MSCT images. Calcified tissues were assumed to be homogeneous and to have a 

Young’s modulus of 12.6 MPa [144] and a Poisson ratio of 0.3. To simulate the injury to 

the aortic root, material failure criterion was defined in the ABAQUS explicit user 

subroutine VUANISOHYPER by specifying a maximum principal stress limit of 2.5 

MPa for the aortic sinuses. An element would be deleted from the FE model of the aortic 

(a) (b)
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root to simulate the rupture response, when the maximum principal stress was reached in 

all of the material points of the element. Details of the determination of material 

parameters for aged human heart tissues were described in previous publications [53, 54, 

75]; and material parameters are listed in Table 4.1. 

 

Table 4.1 Material parameters of non-calcified human aortic sinus, ascending aorta, 

leaflet, myocardium, anterior mitral leaflet, and mitral-aortic intervalvular fibrosa. 

 C10 C01 K1 K2 κ D Theta (°) 

Sinus 1.7553 13.7077 10.5507 80.3790 0.0006 0.0005 20.06 
Ascending aorta 4.1755 3.4649 3.7711 15.9276 0.0864 0.0005 70.95 

Leaflet 0.9627 6.3928 12.7250 48.6769 0.0711 0.0005 28.04 

Myocardium 0.0374 15.3875 6.0798 98.3666 0.1440 0.0005 6.78 

Mitral Leaflet 0.1245 13.6655 11.0069 84.8478 0.0800 0.0005 13.09 

 μ1 α1 μ2 α2 μ3 α3  

Fibrosa 2069.4 12.5 94.8 12.5 3182.6 12.5  
 

4.2.6 TAV Stent Geometry and Material 

 The stent model had a height of 14.3 mm and a thickness of 0.5 mm, which was 

generated using the depictions in the literature to closely resemble the Edwards Sapien 

stent geometry (Figure 4.5). The stent was modeled with the properties of 316 stainless 

steel with a Young’s modulus of  9  GPa , a Poisson ratio of 0. , and initial yield stress 

of 340 MPa [73].  The TAV leaflets were not included in the model because the effects of 

the TAV leaflets on biomechanical interaction between the TAV stent and aortic tissues 

during the stent expansion were assumed to be negligible. This assumption was based on 

the fact that TAV leaflets do not have direct contact with the native aortic tissue. Also, 

material properties of the TAV leaflets are significantly more compliant than those of the 

stainless steel stent.  The pre-deployment geometry of the stent (Figure 4.5) was obtained 

by applying a displacement field outside in the radial direction to crimp the stent to an 

outside diameter of 7.3 mm. 
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4.2.7 Modeling of Balloon Deployment and Simulation Setup 

 The mechanical response of a fluid-filled balloon expansion was modeled by a 

surface-based fluid cavity method in ABAQUS explicit, which was capable of simulating 

the coupling between the deformation of the balloon and the fluid inside with uniform 

properties and state. Three-dimensional membrane elements (M3D4) were used to model 

a fully enclosed balloon, which resembled the Edwards RetroFlex 3 balloon geometry. 

The outer diameter, thickness, and total length of the balloon were 22 mm, 0.06 mm, and 

6  mm, respectively. The balloon had a Young’s modulus of 600 MPa and a Poisson 

ratio of 0.4 [73]. The crimped balloon geometry (Figure 4.5) was obtained by applying a 

displacement field in the radial direction to a cylindrical crimper outside the balloon, to 

the extent that the balloon could fit inside the stent model. A total of 16 ml of water was 

used as the fluid to expand the balloon. 

 The dynamic balloon expansion process was simulated to complete in 1 second, 

which resulted in a constant flux rate of 16 ml/s. The top of the ascending aorta was 

constrained permitting only rotational degrees of freedom. Friction coefficient between 

TAV stents and stenotic aortic roots was assumed to be 0.1 based on the studies by 

Mummert et al. [65] and Vad et al. [137]. Contact force between the stent and aortic root 

was output from ABAQUS; and was calculated by summing the normal contact forces of 

the node set that represented the outside surface of the stent. Deformed geometry of the 

aortic root was used to examine the possible complications, such as aortic root rupture, 

coronary artery occlusion, and paravalvular leak. 
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Figure 4.5 (a) Transcather aortic valve stent and (b) a realistic balloon used to simulate 

(c) fluid controlled balloon deployment. 

 

4.3 Results 

 The deformed aortic root after the maximum stent deployment is shown in Figure 

4.6. The simulation of the TAVI procedure revealed that asymmetric distribution of the 

aortic calcification lead to asymmetric expansion of the TAV stent with respect to the 

center of the aortic root. The TAV stent in the non-coronary sinus region was partially 

expanded, compared to fully expanded stent in the less calcified left coronary sinus 

region. The calcified spot on the interior of the left coronary sinus was displaced by the 

TAV stent (Figure 4.6), causing stress concentration at the bottom of the left coronary 

sinus (Figure 4.7) and consequently the aortic rupture. High stress and strain were 

generally observed at the aortic tissue where it contacted the calcification and stent struts. 

Contact radial force between the TAV stent and aortic root reached 109 N, when the stent 

was fully deployed. Rupture of the aortic root at the bottom of the left coronary sinus 

occurred at roughly 94 % of the balloon volume. The balloon pressure at full deployment 

was 3.5 atm. Rupture location in the simulation was the same as that in the clinical case. 

(a) (b) (c)
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Figure 4.6 (a) Pre- and (b) post-deployment geometries of the aortic root of Case 1. (c) 

Full and (d) local views of the deformed the aortic root and balloon deployment indicates 

annulus tearing under the left coronary ostium due to dislodgement of calcification into 

the vulnerable part of the aortic sinus. 

 

 

Figure 4.7 Side (a) and top views (b) of the deformed native valve leaflets of Case 1 after 

the maximum stent deployment showed high stress at location of tearing. Stress (in kPa) 

contour plot was created for the aortic sinuses. 

 

 

(a) (b) (c)
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4.4 Discussion 

4.4.1 Potential Mechanisms of the Aortic Root Rupture 

 The common practice of oversizing of the TAV stent, which is used to reduce the 

risk of the paravalvular leak [154, 155], could lead to the aortic root rupture. In other 

studies [31, 32], heavily calcified aortic annulus, LVOT, and leaflets, a narrow or 

calcified aortic root, enhanced oval shape of the annulus were also identified as 

anatomical factors that could be responsible for aortic rupture. In the study by Hayashida 

et al. [147], it was hypothesized that the epicardial fat segment might be a vulnerable 

area, since this part of the aortic annulus is not covered by cardiac structures and is 

directly adjacent to the epicardial fat and pericardial cavity. Therefore, it was conjectured 

that annulus rupture was caused by forceful expansion of the TAV stent, and subsequent 

dislodgement of calcification into the vulnerable part of the sinus which lacked support of 

cardiac structure.  

 In our study, one large calcification was observed on the interior of the left 

coronary sinus under the left coronary ostium, which was similar to the rupture cases 

described by Hayashida et al.[147]. By using FE analysis to virtually replicate and 

visualize the TAV stent expansion process, it can be clearly seen that the large calcified 

spot on the interior of the left coronary sinus between coronary ostium and the aortic 

annulus was pushed by the stent, causing the aortic rupture.  Thus, the aortic root rupture 

could be caused by a combination of two factors: (a) the large calcified spot on the 

interior of the left coronary sinus and near the aortic annulus, and (b) the asymmetric 

distribution of the aortic calcification due to a significantly large calcification on the non-

coronary leaflet. However, multiply patient factors and/or a combination of them could 

be the cause of aortic root rupture. The patient factors could include the individual patient 

aortic tissue geometries and material properties, as well as calcification volume, shape, 

location, and orientation.  
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 TAV sizing directly affects contact forces between the stent and the calcified 

aortic root. TAV sizing has been identified as one of the key indicators of aortic rupture 

[31, 32]. Indeed, in the study by Barbanti et al. [31], rupture happened even when aortic 

valve was under-sized (Patient 18 of the study had a relative area oversizing of -2.58%, 

while Patient 5 and Patient 19 only had roughly 2% oversizing). Clearly, TAV sizing 

should be evaluated with patient-specific anatomic features and calcification 

configurations, which underscored the importance of patient-specific analysis of 

complicated, rare clinical TAVI cases of aortic rupture. 

4.4.2 Limitations 

 There are many assumptions and limitations in this chapter. Our simulation results 

should be interpreted with the consideration of these assumptions and limitations. First, 

only one TAVI clinical cases were investigated in this paper, more prospective clinical 

cases are needed to validate our modeling methods. In the model setup, we assumed that 

the TAV stent was deployed at the optimal height and implantation angle. The impact of 

different stent deployment heights and implantation angles will be studied in the future. 

There is a lack of studies on the material properties of the aortic valve calcification [143-

145]. Therefore, a parametric study may be necessary to investigate the effects of 

calcification stiffness on biomechanical interaction during TAVI. Similarly, there is a 

lack of the data on the material properties, including ultimate tensile strength (UTS), of 

human aortic sinuses in the literature. Based on our preliminary data from uniaxial tests 

on aortic tissue, the UTS of the aortic sinuses was found to be in the range from 2.3 to 3.1 

MPa. A maximum principal stress limit of 2.5 MPa was used as the material failure limit 

for the aortic sinuses. Since material properties of human aortic tissues could be different 

even among patients with same age and gender, in order to provide a confidence interval 

for the simulation results, more material tests on human aortic root tissue should be 

conducted in future studies. Furthermore, experimental tests will be performed to validate 
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the fluid controlled balloon model. No blood flow was considered in the current study. 

Therefore, paravalvular leak and coronary occlusion were evaluated by examining the 

deformed geometries of the stent and tissue. 

4.5 Summary 

 In this chapter, we presented patient-specific FE models of a TAVI clinical case, 

which incorporated human aortic tissue material properties with material failure criteria, 

and balloon expansion process using a surface-based fluid cavity method. Simulation 

results indicated that aortic rupture mechanism was complicated, and could be different 

among patients. We demonstrated that the engineering analysis could provide additional 

information to help clinicians evaluate complicated, high risk aortic rupture cases. Since a 

systematic study of a large patient cohort of aortic rupture is currently not available (due 

to the low occurrence rate) to clearly understand underlying rupture mechanisms, case by 

case engineering analysis is recommended for evaluating patient-specific aortic rupture 

risk. 
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CHAPTER 5 

FE SIMULATION OF TAVI USING ANIMAL MODELS 

 

 In previous chapters, a methodology was described to simulate the stent-tissue 

interaction during the TAVI deployment. However, direct validation of the FE models 

was limited due to the availability of the in vivo TAVI patient material properties and 

biomechanical measurements. In this chapter, we tried to validate our modeling approach 

by simulating the stent expansion process in animal models, which have been used in 

TAVI clinical feasibility studies.  

 Micro-computed tomography scans of the porcine and ovine hearts were obtained 

to reconstruct initial geometries. Biaxial and uniaxial tests were conducted to determine 

the material properties of the animal heart tissues. The TAV stent deployment inside the 

animal aortic roots was simulated. The radial contact forces and stent pullout forces were 

compared to the experimental data in our previous study, where in-house self-expandable 

Nitinol stents were deployed inside porcine and ovine hearts to measure interactive 

forces. The comparison of tissue-device contact forces between computational and 

experimental data demonstrated that the finite element simulations of TAV expansion in 

animal models could mimic the mechanical responses of the in vitro structural 

experiments. Also, our results showed that 2 years old porcine hearts had higher 

structural stiffness than 1-2 years old ovine and 6-9 months old porcine hearts.  

 Overall, the results of this chapter suggested that our modeling methodology 

could be potentially utilized to create accurate computational models of TAV 

deployment. 
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5.1 Introduction 

 Several detailed computational models [72, 74-77, 79-81, 151] have been 

developed to simulate TAVI procedure and to unravel its biomechanics. However, since 

it is very challenging to obtain in vivo material properties and biomechanical parameters 

from clinical TAVI patients, there is a lack of direct validation of the computational 

models. The limited comparison was mostly completed using general clinical 

observations, echocardiogram, angiogram, and the deformed stent geometries acquired 

from the post-TAVI CT scans (post-TAVI CT scans are currently not formally 

recommended as routine follow-up studies in the US). Moreover, animal models, such as 

porcine and ovine, have been used in TAVI clinical feasibility studies [156-158]. 

Difference between animal models and human include the presence of aortic calcification 

and tissue stiffness. As a result, adverse events such as PVL and stent migration were 

observed in TAVI clinical feasibility studies using animal models. While porcine model 

is considered to be a substitute of healthy human tissues, there is a need to quantify the 

discrepancy in the mechanical properties between various animal models at the structural 

level. 

 Therefore, the objective of this chapter was to validate the computational 

modeling methodology that we developed in our previous research for clinical TAVI 

patients [75, 80, 81] by comparing simulations and experiments of the stent deployment 

process in animal models. We also attempted to compare the difference in structural 

mechanical responses between various animal models during TAVI deployment. 

Specifically, micro-computed tomography (Micro-CT) scans were obtained for the 

porcine and ovine hearts with an aortic annulus size of 21 mm to reconstruct initial 

geometries. Animal hearts of the similar age and weight were dissected for the biaxial 

and uniaxial testing to determine the material properties of the heart tissues. The TAV 

stent deployment inside the finite element (FE) models of the porcine and ovine aortic 

roots was simulated in Abaqus/Explicit 6.13 (SIMULIA, Providence, RI). The simulation 
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results (especially the radial contact forces and pull-out forces) were compared to the 

structural experimental data in a previous study [65], where in-house self-expandable 

Nitinol stents were deployed inside porcine and ovine hearts to measure interactive forces 

between the device and tissue. Additionally, TAV deployment simulation results were 

compared among the different animal models. 

5.2 Methods 

 The overall design of the study is illustrated in Figure 5.1.  

 

Figure 5.1 Study design for finite element analysis of transcatheter aortic valve 

implantation using animal models. 

 

5.2.1 Specimen Preparation 

 Fresh animal hearts (1-2 years old ovine, 6-9 months and 2 years old porcine 

hearts) were obtained from Animal Technologies Inc. (Tyler, TX USA) and stored in a 

−80 °C freezer for a maximum of 3 weeks before testing. Prior to testing, each frozen 

heart was kept at room temperature (20°C) for 30 minutes and then thawed in a 37°C 

water bath. The hearts were weighed and the aortic annulus size was measured with 
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aortic sizers (Edwards LifeSciences, Irvine, CA). Three animal hearts, i.e., a 1-2 years old 

ovine (408 g), a 6-9 months old porcine heart (447 g), and a 2 years old porcine heart 

(750 g), with an aortic annulus size of roughly 21 mm were selected for geometry 

reconstruction. The left ventricles of the hearts were dissected approximately 10 mm 

below the aortic annulus plane (Figure 5.2). Extra tissues on the surface of the aortic 

sinuses were carefully trimmed from the specimens. Each specimen included aortic root, 

aortic leaflets, mitral-aortic intervalvular fibrosa, anterior mitral leaflet, fibrous trigones, 

and left ventricle. 

 

Figure 5.2 (a) Dissected 1-2 years old ovine, 6-9 months and 2 years old porcine hearts. 

 

5.2.2 Micro-CT Image Acquisition and Geometry Reconstruction 

 The three dissected specimens were imaged using a SIEMENS Inveon micro-CT 

scanner (SIEMENS, Munich, Germany), which has maximum field of view of 10cm and 

is capable of imaging live animals and specimens at 20-100um voxel resolutions. Micro-

CT images of animal aortic roots (Figure 5.3) were imported into Avizo 8 software (VSG 

FEI, Hillsboro, OR) for 3-dimensional (3D) reconstruction. The outer and inner surfaces 

(a) (b) (c)
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of the aortic root were identified to create a 3D representation (Figure 5.4). HyperMesh 

software (Altair Engineering, Inc., MI) was used to generate FE mesh of the 3D aortic 

root models (Figure 5.4), where 3D solid elements (4-node tetrahedral C3D4 elements) 

were used in Abaqus FEA. The initial geometries of the three aortic roots were slightly 

scaled to the same annulus size in order to eliminate the error introduced by annulus 

sizing. Details of the methodology of FE model development were described in previous 

publications [75, 80]. 

 

Figure 5.3 Micro-CT scan of the root showing the aortic valve leaflets with (a) left 

coronary artery and (b) right coronary artery, and (c) clinical CT image of a TAVI patient 

showing left coronary artery and aortic calcification.  

LCS = left coronary sinus, RCS = right coronary sinus 

 

 

(a) (b) (c)
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Figure 5.4 (a) Automatic-segmented 3D surface mesh of the aortic root overlapped with 

the micro-CT image, (b) side and (c) top views of the final finite element model of the 2 

years old porcine aortic root. 

 

5.2.3 Planar Biaxial and Uniaxial Mechanical Testing 

 Details of the biaxial and uniaxial testing techniques were described in previous 

chapters. Briefly, in-house load-controlled biaxial tests of ovine and porcine aortic tissues 

were used to define the valve material properties. Biaxial testing was carried out 

according to the methods presented in Sacks and Sun [135]. The typical sample size in 

biaxial tests was 15 mm by 15 mm. Twenty continuous cycles of preconditioning were 

performed to reduce tissue hysteresis. Each sample was tested at the maximum load 

possible without causing tissue damage. Tissue samples were assumed to be 

incompressible and planar. Material properties of the ovine and porcine ascending aorta, 

sinus, and leaflet were mostly averaged over 10 biaxial test samples of each region.  

 Uniaxial tests were conducted using dogbone-shaped samples of the aortic-mitral 

intravalvular fibrosa. The initial length and thickness of the sample was measured by a 

thickness gauge. The tests were carried out with the specimens submerged in saline 

solution at room temperature. To precondition the samples, 10 successive loading cycles 

were executed. Axial load was recorded during the entire test. The Cauchy stress was 

(a) (b) (c)
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computed as axial load divided by the current cross-sectional area. The current 

transversal area was evaluated through the incompressibility condition. The strains were 

computed during the test by video tracking the displacements of the 2 optical markers 

placed in the center of the surface of the sample. 

5.2.4 Material Models of Heart Tissues 

 The anisotropic hyperelastic Holzapfel-Gasser-Ogden material model [152] was 

adopted to characterize mechanical behaviors of the animal heart tissues (i.e., aortic 

leaflets, aortic sinus, ascending aorta, mitral leaflet tissues, and myocardium). Briefly, the 

heart tissues are assumed to be composed of a matrix material with two families of 

embedded fibers, each of which has a preferred direction. The isotropic hyperelastic 

Ogden material model [153] was used to characterize the mechanical properties of the 

mitral-aortic intervalvular fibrosa and fibrous trigones obtained from uniaxial testing. The 

best-fitted material parameters of the animal aortic tissues are listed in Table 5.1. 

 

Table 5.1 Material parameters of the animal aortic tissues. 

Specimen 

C01 K1 K2 C10 κ Theta (°) D 
Species Age Tissue 

Ovine 1-2yo Aorta 0.6267 2.2290 0.4252 13.4067 0.3333 0.0001 0.0005 

Ovine 1-2yo Sinus 0.8019 1.4952 0.3390 8.6251 0.1696 10.5777 0.0005 

Ovine 1-2yo Leaflet 11.5241 11.6636 41.2337 0.3602 0.1065 29.3247 0.0005 

Porcine 6-9mo Aorta 1.0156 1.2185 2.0183 15.9920 0.3333 0.0001 0.0005 

Porcine 6-9mo Sinus 1.2654 0.8909 2.2239 9.0375 0.3333 0.0001 0.0005 

Porcine 6-9mo Leaflet 11.1375 34.6759 74.2008 1.5021 0.3333 0.0999 0.0005 

Porcine 2yo Aorta 2.0084 0.2646 11.0050 5.5707 0.3333 0.0002 0.0005 

Porcine 2yo Sinus 1.1239 1.0727 0.7509 5.3232 0.3333 0.0011 0.0005 

Porcine 2yo Leaflet 7.9921 4.8561 24.6861 1.1111 0.0396 0.0473 0.0005 
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5.2.5 Simulation Setup 

 The stent model had a height of 14.3 mm and a thickness of 0.5 mm, which was 

generated using published data in the literature to stimulate the Edwards SAPIEN stent 

geometry (Figure 5.5). The stent was modeled with the properties of 316 stainless steel 

with a Young’s modulus of  9  GPa, a Poisson ratio of 0. , and initial yield stress of   0 

MPa [73]. The mechanical response of a fluid-filled balloon expansion was modeled by a 

surface-based fluid cavity method in Abaqus/Explicit, which was capable of simulating 

the coupling between the deformation of the balloon and the fluid inside with uniform 

properties and state. The valve was positioned such that the aortic annulus bisected the 

stent. The dynamic balloon expansion process was simulated to complete in 1 second, 

which resulted in a constant flux rate of 16 ml/s. Friction coefficient between TAV stents 

and aortic roots was assumed to be 0.1 based on the studies by Mummert et al. [65] and 

Vad et al. [137]. Contact radial and shear forces between the stent and aortic root were 

output from Abaqus FEA; and were calculated by summing the normal and shear contact 

forces of the node set that represented the outside surface of the stent. 

 

Figure 5.5 Finite element simulation setup for the balloon-expandable stent expansion 

inside the 1-2 years old ovine aortic root. 
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5.2.6 In Vitro Structural Experiments 

 In vitro structural experiments [65] were conducted previously in our lab to 

quantify the stent radial expansion force, pullout force and coefficient of friction at the 

stent-tissue contact interface. Self-expanding Nitinol stents were fabricated using Nitinol 

wires obtained from Memry Corporation, Bethel, CT (meets ASTM F2063-05). The 

shape of the stent was cylindrical with a height of 16 mm and a diameter of 26 mm. The 

stent had 4 strut cells in the axial and 12 in the circumferential directions. The stent 

geometry was set by using a heat treatment of 8 minutes at 500°C. Stent crimp tests 

(Figure 5.6) were performed on a Tinius Olsen uniaxial testing apparatus (Model H50K-

S, Horsham, PA) to quantify the relationship between the stent diameter and the radial 

expansion force of the Nitinol stents.  

 

Figure 5.6 (a) Stent crimp experimental setup to measure hoop force at body temperature 

(37°C). (b)  Hoop force exerted on transcatheter valve stent from Dacron strap. (c)  Free 

body diagram of stent cross-section [65]. 

 

 Then, 6–9 months old porcine and 1-2 year old ovine hearts with an aortic 

annulus size of 21 mm were obtained for the stent deployment tests and submerged in a 

clear-sided tank filled with a Ca2+-free and glucose-free Tyrode solution. A Nitinol TAV 

stent was deployed into the aortic root so that the aortic annulus was approximately 
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aligned with the middle of the TAV stent height (Figure 5.7). The stent diameter was 

measured by an ultrasound probe (75L60EA Ultrasonic Transducer, Mindray Bio-

Medical Electronics Co.), which could capture 2-dimensional cross-sectional images of 

the TAV stent deployed inside the aortic root at the tissue-stent contact equilibrium 

position. The final diameter of the deployed stent was used to deduce the radial force 

based on the experimental data of the stent-crimping tests. Additionally, the TAV stent 

was then pulled out of the intact valve and the pullout force was recorded. The results 

from stent pullout tests were also used to calculate frictional coefficient between the stent 

and tissue. The structural experimental data (especially the radial contact forces and pull-

out forces) were compared to the results of TAV deployment simulations using animal 

models. 

 

Figure 5.7 (a) A Nitinol TAV stent and (b) stent deployment inside a porcine aortic root. 

 

5.3 Results 

5.3.1 Anatomic Features of the Animal Aortic Roots 

 An examination of the specimens was performed before the micro-CT scan to 

evaluate the anatomic structures of the 1-2 years old ovine, the 6-9 months and the 2 

years old porcine aortic roots. A short coronary ostium height (from 4 to 8 mm) was 

(a) (b)
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observed in all three aortic roots. Compared to the 1-2 years old ovine and the 6-9 months 

porcine aortic roots, the sinuses of the 2 years old porcine aortic root have a more distinct 

bulging shape. The sinotubular junction of the 1-2 years old ovine and the 2 years old 

porcine aortic roots is smaller than the aortic annulus, while the sinotubular junction 

diameter in human hearts is consistently larger than annulus diameter [45, 46, 52, 113, 

117]. Thicker left ventricular wall was found in the three animal hearts compared to 

human hearts. Moreover, the right coronary leaflet is attached to the left ventricle in 

ovine and porcine hearts (Figure 5.3), as opposed to the bottom of the right coronary 

sinus in human hearts. The coronary artery lumen diameter of the ovine and porcine 

aortic roots gradually increases as the coronary artery connects to the sinus (Figure 5.3), 

whereas in human the lumen diameter is more constant (Figure 5.3). 

5.3.2 Simulation Results of TAVI Procedure Using Animal Models 

 The deformed aortic roots at the maximum stent deployment are shown in Figure 

5.8a, Figure 5.8b, and Figure 5.8c for the 1-2 years old ovine, the 6-9 months and the 2 

years old porcine hearts, respectively. Degree of ellipticity of the annulus was evaluated 

for each model by calculating the ratio of minimum annulus diameter to maximum 

annulus diameter. The degree of ellipticity of the aortic annulus (0.99, 0.96, and 0.96) 

was approximately 1 for all three animal models, which suggested that the stent was 

expanded uniformly in the radial direction inside the aortic roots. Although the deformed 

leaflet free edges of the three models were generally higher than the corresponding 

coronary ostia, due to the large funnel-shaped coronary artery lumen, no coronary 

obstruction was observed. When the balloon was filled with the defined volume of fluid, 

the average diameters of the deformed stent were 22.8 mm, 23.0 mm, and 23.1 mm for 

the 1-2 years old ovine, the 6-9 months and the 2 years old porcine hearts, respectively. 
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 Contact forces in the radial direction were 60 N, 65 N, and 75 N for the 1-2 years 

old ovine, the 6-9 months and the 2 years old porcine hearts, respectively. Contact forces 

in the axial direction were 5.4 N, 5.8 N, and 6.4 N for the three animal models. 

 

Figure 5.8 The deformed aortic roots of (a) the 1-2 years old ovine, (b) the 6-9 months, 

and (c) the 2 years old porcine hearts at the maximum stent deployment. 

 

5.3.3 Results of In Vitro Structural Experiments 

 A stent crimp experiment was performed to quantify the radial expansion force of 

the Nitinol stents. Subsequently, the aortic root tissue response was obtained from the 

aortic root-stent expansion tests of porcine and ovine hearts. During the stent expansion 

process, the aortic root exhibited nonlinear responses, becoming less compliant with 

increased dilation. The 6-9 months porcine samples demonstrated similar deformation 

and radial forces to 1-2 years old ovine samples. When 6-9 months porcine aortic roots 

with an annulus of 21 mm were dilated into a diameter of 23 mm, the radial expansion 

force was approximately 60 N (Figure 5.9). Whereas, when 1-2 years old ovine aortic 

roots with an annulus of 21 mm were dilated into a diameter of 23 mm, the radial 

expansion force was roughly 58 N. Furthermore, stent pullout tests showed that when the 

stents were deployed inside the aortic roots with an annulus of 21 mm, the force to 

dislodge the stent in the axial direction was in the range of 4.9-6.3 N. 

 
(a) 1-2 years old ovine (b) 6-9 months porcine (c) 2 years old porcine 
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Figure 5.9 Biomechanical tissue behavior of the aortic root tested in (a) porcine and (b) 

ovine tissue grouped according to aortic annulus (AA) diameter sizes 21 [65].  

 

5.3.4 Comparison between FE Simulations and In Vitro Experiments 

 Simulations of TAV stent deployment inside the porcine and ovine hearts 

demonstrated that the contact radial forces extracted from FE models were similar (60 N 

vs. 58 N for the 1-2 years old ovine hearts, 65 N vs. 60 N for the 6-9 months old porcine 

hearts) to the in vitro experimental results. When the frictional coefficient determined 

from in vitro experiments was used in the simulations, contact shear forces of the aortic 

root FE models were also comparable to those in the structural experiments. In addition, 

for the in vitro structural experiments, ultrasound images of the deployed stent inside 

porcine and ovine aortic annulus revealed that the deformed stents at different height 

levels were highly circular. Similar circularity was also observed in the deformed stent 

profiles from the simulations. 

(a) (b)
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5.4 Discussion 

5.4.1 Validation of the FE Modeling Method of TAVI Procedure Using Animal Models 

 Even though significant experience has been gained on the TAVI, there are still 

severe adverse events associated with the procedure. Currently, there is no available tool 

to predict and prevent these adverse events. Successful TAV deployment and function 

depend heavily on the tissue-TAV interaction. Thus, a reliable prediction of the 

biomechanical interaction between native calcified tissue and device in TAVI is essential 

for the success of this procedure. Although computational models have been used to 

investigate the biomechanics of the TAVI procedure, the validation of the models was 

limited due to the availability of the direct in vivo biomechanical measurements from 

TAVI patients. Therefore, the main purpose of the study was to use FE simulations of 

TAVI procedures in animal models to validate the methodology that was established in 

our previous research [75, 80, 81]. 

 Comparisons between the simulations and in vitro experiments using 1-2 years 

old ovine and 6-9 months old porcine hearts showed that the simulations of TAV 

deployment in animal models could quantitatively replicate the realistic biomechanical 

interaction in terms of tissue-device contact forces and ellipticity of the deformed annuli. 

It should be noted that tissue-prosthesis interaction forces were quantified when the 

diameters of the simulated and in vitro aortic annuli (hence the overall aortic structural 

deformation) were approximately the same. As a result, the correlation between the two 

different types of stents used in the study, i.e. self-expandable Nitinol stents for the in 

vitro structural experiments vs. balloon-expandable stainless steel stents for TAVI 

simulations, was established based on the deformed tissue response. The validation 

results showed in this chapter indicated that our FE modeling methodology of TAV 

deployment might be potentially utilized to create accurate FE models of TAV 

deployment and might generate useful information for pre-procedural planning of TAVI. 



www.manaraa.com

 97 

5.4.2 The Use of Animal Models in TAVI Clinical Feasibility Studies 

 Although several animal models have been used in the TAVI clinical feasibility 

studies, the detailed quantification of mechanical properties of the different models was 

inadequate to determine which substitute could best approximate clinical TAVI patients. 

Accordingly, this chapter attempted to compare the difference in structural mechanical 

responses during TAV deployment among various common animal models.  

 Our results showed that based on the contact radial forces and stent pullout forces 

from both the in vitro experiments and simulations, the structural compliance of the aortic 

annuli of the 1-2 years old ovine and 6-9 months old porcine hearts were comparable, 

whereas the annuli of the 2 years old porcine hearts exhibited stiffer mechanical 

properties than the other two animal groups. The shear force between the stent and tissue, 

which was the resistance of the stent from migrating into the aorta or left ventricle, was in 

the range of 4.9-6.4 N determined from both the in vitro experiments and simulations. To 

prevent stent migration, the shear force should be higher than the retrograde force 

(approximately 6 N) acting on the closed valve, which was quantified in the studies by 

Dwyer et al. [83] and Sun et al. [70]. Clinical feasibility studies using juvenile animal 

models [156, 158] showed that stent migration occasionally occurred during the stent 

deployment. This adverse event was thought to be caused by the fact that animal annulus 

was highly elastic and not calcified, while the irregular surface of the aortic valve 

calcification could help anchor the valve in clinical TAVI patients. Furthermore, the 

examination of the anatomic features of the animal aortic roots showed that they 

generally had low coronary ostium heights, which could contribute to the occasional 

coronary obstruction in the clinical feasibility studies. Consequently, when the stent was 

positioned relatively low to avoid coronary obstruction in animal aortic roots, supra-

skirtal regurgitation was frequently noted in those studies. 

 Since 2 years old porcine hearts had stiffer material properties and more 

developed anatomical structures than the other 2 groups, they could be a closer 
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approximation to real TAVI patients. The use of the 2 years old porcine hearts in the 

clinical feasibility studies might reduce the rate of the aforementioned adverse events. 

Moreover, our findings in this chapter with regards to the difference in the mechanical 

properties between commonly-used animal models were generally consistent with biaxial 

and aortic root inflation testing results [53, 54, 64, 159, 160] that were in the literature. 

5.4.3 Comparison of Animal Models to Clinical TAVI Patients 

 Biomechanical characteristics between tissue and prosthesis in clinical TAVI 

patients were previously reported in our studies [75, 80, 81]. The contact normal and 

shear forces of the TAV deployment inside animal models were lower than those of the 

clinical TAVI patients, while the maximum principal stresses of the aortic tissue were 

also lower in animal models. Additionally, due to the presence of aortic calcification in 

the TAVI patients, their annuli displayed a more elliptical shape than those of the animal 

models. 

5.4.4 Limitations 

 It was challenging to preserve the aortic tissue due to the length of time of the 

micro-CT scanning. Damage and permanent deformation to the aortic wall and leaflets 

was usually observed after stent deployment tests. Consequently, aortic tissues from the 

same heart were not reused for the in vitro structural experiments, micro-CT imaging, 

and mechanical testing. Moreover, material parameters used for the FE models were 

averaged properties over 10 biaxial test samples in lieu of specimen-specific material 

properties. Since there is a lack of experimental data, the material properties of left 

ventricle obtained from our previously study [75] was used for all the simulations. 

Although frictional coefficient between the stent and tissue could depend on the stent 

design and material, same coefficient was assumed for the in vitro experiments and FE 

simulations. 
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5.5 Summary 

 The objective of this chapter was to validate the FE modeling method that was 

developed in our previous research by using FE simulations of TAVI procedures in 

animal models and in vitro structural experiments. The comparison of tissue-device 

contact forces between computational and experimental data demonstrated that the FE 

simulation of TAV expansion in animal models could reproduce the mechanical response 

of in vitro structural experiments, which indicated that our FE modeling methodology 

might be potentially utilized to create accurate FE models of TAV deployment and 

generate useful information for pre-procedural planning of TAVI. Also, this chapter 

attempted to quantify the discrepancy in the mechanical properties between various 

animal models at the structural level. Our results showed that 2 years old porcine hearts 

might be a closer approximation to clinical TAVI patients compared to 1-2 years old 

ovine and 6-9 months old porcine hearts. 
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CHAPTER 6 

PARAMETRIC STUDIES OF TAV DEPLOYMENT STRATEGIES 

 

 In previous chapters, a methodology was developed to model TAVI stent 

deployment at a patient-specific level. However, it is still unknown how reliable the 

simulations results are and how sensitive the models are to the input parameters. 

Furthermore, the clinical application of the current research is to use simulation-based 

analysis to find optimal TAVI implantation strategies and to minimize TAV deployment-

related complications. For example, the fluid volume information obtained from the 

balloon expansion simulation could be used to adjust injection volume to avoid adverse 

events such as PVL and aortic rupture. Similarly, different stent deployment heights 

could be easily simulated before the procedure is completed. 

 Therefore, in this chapter, parametric studies were conducted to examine the 

influence of the model input such as material properties, balloon volume, stent 

deployment height, calcification location, and different methods to simulate balloon 

inflation on TAVI simulation results and subsequently the potential clinical 

complications such as PVL, annular rupture, and coronary artery occlusion. 

6.1 Introduction 

 The TAVI case with aortic rupture that was described in Chapter 5 was used as 

the baseline model. The model input was perturbed to represent the potential scenarios in 

clinical TAVI settings. The TAV deployment was simulated and compared to clinical 

observations of the baseline case. The simulation results that were used to quantify the 

changes due to different input parameters were biomechanical characteristics such as the 

deformed aortic root and stent geometries, contact forces in radial and axial directions, 

and stress.  
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6.2 Methods 

6.2.1 Biomechanical Characteristics of TAVI Simulation 

 Based on the potential failure modes of the TAV observed during clinical trials 

[161-167], the following performance measures are devised to evaluate the aortic root-

TAV interaction:  

 i) Interactive contact forces between the TAV stent and the aortic root. This is an 

important measure, since elevated radial contact force may cause tearing of the aortic 

wall and low radial force can cause paravalvular leakage. Insufficient axial contact force, 

when it is smaller than the migration/distraction force (i.e., the peak aortic pressure 

multiplied by valve orifice area) [168], may result in device migration. The radial and 

axial forces are denoted by RF and AF respectively, and expressed as:    ∑         
  
     

and 𝐴  ∑         
  
   , where ns is the total number of nodes of the stent and          and 

         are the radial and axial contact forces at each stent node after TAV deployment.  

 ii) Peak stresses in the aortic root wall. Elevated peak stress in the vessel wall 

may trigger tissue growth and remodeling, and lead to tissue degeneration or aortic 

dilatation. It has been shown that bioprosthetic heart valve leaflet structural deterioration 

and calcification are correlated with regions of high stresses [169, 170].  

 iii) Coronary ostia occlusion index. This index is used to evaluate how close the 

aortic leaflet/TAV stent is to the coronary ostia following TAV deployment. As clinically 

observed, impairment of coronary flow can lead to myocardial infarction. The coronary 

ostia occlusion index (COOI) is defined as              −                  where 

XL,post and Xco,post are the height of the center of the leaflet free edge and the height of the 

coronary ostium after TAV deployment, respectively (Figure 6.1). XL,post will be 

measured as the axial (vertical) distance from the center of the leaflet free edge to the 

aortic annulus plane. Xco,post will be measured as the axial (vertical) distance from the 

inferior border of the coronary ostium to the aortic annulus plane.  Dco is the diameter of 
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the coronary artery lumen. This equation calculates the minimal distance between leaflet 

and coronary arterial ostia. When COOI > 0, one coronary ostium has the potential of 

being blocked by a leaflet.  

 

Figure 6.1 Calculation of coronary ostia occlusion index COOI. 

 

 iv) Paravalvular leak index. Due to heterogeneity of the stenotic aortic root, a 

deployed TAV may not be entirely in contact with the patient’s root wall, especially 

when regions of calcification exist.  To quantify the gap between the TAV stent and the 

root, the paravalvular leak index (PVLI) will be used, which is defined as:      

 𝐴         − 𝐴            𝐴          , where, Astent,post is the cross-sectional area of the 

region bounded by the stent’s outer perimeter at the aortic annulus; and Aroot,post is the 

cross-sectional area of the aortic annulus after TAV deployment (Figure 6.2). When 

PVLI > 0, there is a potential of paravalvular leakage. 

Dco

Xco XL
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Figure 6.2 Calculation of paravalvular leak index PVLI (a) post deployment aortic root 

geometry (b) cross-sectional area (in red) of the deformed aortic annulus and (c) cross-

sectional area (in red) of the deformed stent. 

 

6.2.2 Impact of the TAVI Deployment Variables 

 The effects of the model input parameters on the TAV deployment simulation 

results and the eventual clinical outcomes were investigated in parametric studies. The 

model inputs that were examined in this section are (i) material properties of the human 

heart tissue, (ii) the balloon inflation volume, (iii) the TAV stent implantation depth, (iv) 

calcification location, and (v) methods of balloon expansion simulations.  

 i) For the baseline model, load-controlled biaxial tests of healthy human aortic 

valve leaflets, aortic sinuses, ascending aorta and mitral leaflets obtained from a 96-year-

old female cadaver heart were conducted. It was assumed that the material properties of 

the biaxial-tested human heart tissue were similar to those of the 94-year-old female 

TAVI patient. However, since material properties of human aortic tissues could be varied 

even among patients with same age and gender due to different health conditions and life 

styles, material properties of human aortic root tissue from other cadaver hearts (an 80-

year-old female and an 88-year-old female) tested in our lab were used to investigate the 

sensitivity of FE simulations to material parameters. The material parameters of the 3 

patients used in the study are listed in Table 6.1 and shown in Figure 6.3.  

(a) (b) (c)

Aroot Astent
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Table 6.1 Material parameters of the human heart tissues. 

Specimen 

C01 K1 K2 C10 κ Theta (°) D 
Patient Age Tissue 

Patient 1 96-yo 

Aorta 22.8094 

 
0.1393 117.4753 0.6549 0.0000 0.0001 0.0005 

Sinus 34.5907 146.1744 61.5390 0.6559 0.1459 37.5053 0.0005 

AL 40.5289 83.6776 86.2279 0.3258 0.3333 32.9131 0.0005 

AML 77.9131 23.8401 150.1645 0.2955 0.3333 89.9998 0.0005 

Patient 2 88-yo 

Sinus 18.7420 

 
4.8089 34.7871 1.0202 0.0337 0.1127 0.0005 

AL 43.0389 81.5896 30.7071 0.4183 0.3333 40.3099 0.0005 

AML 67.7875 42.8614 100.0000 0.5719 0.0000 89.9999 0.0005 

Patient 3 80-yo 

Aorta 4.4270 0.4098 23.0293 3.6276 0.3333 89.9999 0.0005 

Sinus 15.0206 10.8731 44.0452 1.6029 0.0000 0.0012 0.0005 

AL 74.3880 16.5630 99.8700 0.0572 0.1485 21.4358 0.0005 

AML 18.7048 7.8689 24.4632 0.0359 0.1109 29.0297 0.0005 

Footnote: AL = aortic leaflet, AML = anterior mitral leaflet 

 

 

Figure 6.3 Material properties of the human aortic sinuses for the parametric study 

 

 ii) For TAVI patients with high risk of aortic annulus rupture like the baseline 

case described in Chapter 5, special care should be taken to avoid aggressive and full 

balloon dilatation. In this section, besides the nominal volume (16 cc), the balloon 
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inflation with nominal volume ±1 cc and ±2 cc was simulated to find the proper degree of 

balloon expansion for the TAVI procedure.  

 iii) Positioning the valve prosthesis too high or low may result in embolization, 

coronary obstruction, or PVL. Since it is challenging to precisely control the TAV stent 

implantation depth relative to the annulus during the deployment, parametric study of the 

FE model could provide useful information on how much the variation in the stent 

implantation depth could affect the final deployment results. The baseline height was 

defined as 50% of the stent height above the annulus plane. Moreover, the simulations 

with 10% and 90% of the stent height above the annulus plane were completed. The 

results from the additional simulations were compared to the baseline model to examine 

the effects of boundary conditions. 

 iv) To investigate the impact of spatial distribution of calcification on the aortic 

root rupture potential, the FE model of this patient was perturbed, and two additional 

aortic root geometries (Figure 6.4) with different calcification locations and distributions 

were analyzed and compared in this chapter. Thus, we had: Scenario A - the original 

calcification condition obtained from MSCT images. Scenario B - the calcification spot 

on the interior of the left coronary sinus was removed.  We wanted to evaluate if the 

aortic root rupture was associated with that calcification spot, i.e., if the rupture could still 

occur without the calcification. Scenario C – with the Scenario B condition, a 

calcification spot was added to the interior of the right coronary sinus, which was in a 

similar volume and location to the calcification in left coronary sinus; at the level of the 

right coronary sinus between the ostium of the right main stem and the aortic annulus 

entering the myocardium. With Scenario C, we wanted to examine if there was a 

difference in the rupture potential when the calcification was placed at either left or right 

coronary sinus. 
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Figure 6.4 Top views of the 3 aortic root initial geometries with different calcification 

locations and distributions (red elements indicate calcification). 

 

 v) FE analysis has been used as a tool to simulate the TAVI procedure and 

investigate the mechanics during TAV deployment [74-76]. However, previous studies 

have not assessed the interaction between the aortic root and stent due to transient non-

uniform balloon expansion. The common methods of simulating the balloon expansion 

process were to prescribe displacement field or to apply uniform balloon internal 

pressure. The assumption of the displacement control method was that the balloon-

expandable stent is almost uniformly expanded and circular in shape, whereas the reality 

is that the deformed stent geometry could still vary with the aortic calcification 

distribution [171]. By applying uniform pressure inside the balloon, the phenomenon of 

stent foreshortening and dogboning shapes could be produced. However, since the 

annulus size and aortic calcification volume are different for individual patients, it is 

challenging to determine the magnitude of the ultimate internal pressure that is used to 

deploy the stent to a designed diameter.  Therefore, the realistic balloon expansion 

behavior might not be characterized due to the assumptions used in the aforementioned 

methods.  

 To determine the effects of loading conditions on simulation results, three balloon 

expansion methods (Figure 6.5) were used in this chapter: (a) fluid controlled, (b) 

displacement controlled, and (c) pressure controlled balloon expansion. For the fluid 
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controlled simulation, the balloon expansion process was regulated by a constant flux rate 

of 16 ml/s. For the displacement controlled simulation (Figure 6.5a), a displacement field 

was prescribed to a cylinder in its radial direction so that it could expand the TAV stent 

to an outer diameter of 23 mm. For the pressure controlled simulation, the same balloon 

and TAV stent initial geometry as the fluid controlled simulation was utilized. A linear 

pressure input with a peak value of 3.5 atm, which equaled the peak pressure at the end of 

the fluid controlled simulation for this patient, was applied to the interior of the balloon.  

 

Figure 6.5 (a) Finite element model of the TAV stent and a simplified balloon for the 

displacement controlled method. (b) Finite element model of the TAV stent and balloon 

deployment for the surface based fluid cavity and pressure controlled methods. 

 

6.3 Results 

6.3.1 Baseline Case Presentation 

 As described in Chapter 5, a 94-year-old female patient with a tricuspid aortic 

valve and an annulus size of 19.6 mm was referred for TAVI procedure. 

Echocardiography revealed severe AS in the non-coronary leaflet as well as the interior 

of the aortic root; only the left coronary leaflet could open during cardiac cycles. The pre-

(a) (b)



www.manaraa.com

 108 

procedural MSCT scans showed heavy calcification on the non-coronary leaflet, and one 

large calcified spot on the interior of the left coronary sinus at the level between the 

ostium of the left main stem and the aortic annulus entering the myocardium. A size 23 

Edward SAPIEN TAV was implanted. During TAVI procedure, aortic root tearing 

happened and visualized below the left main coronary artery. 

6.3.2 Simulation Results of the Baseline Case  

 The results of the baseline simulation are listed in Table 6.2. The simulation of the 

TAVI procedure revealed that asymmetric distribution of the aortic calcification lead to 

asymmetric expansion of the TAV stent with respect to the center of the aortic root. The 

TAV stent in the non-coronary sinus region was partially expanded, compared to fully 

expanded stent in the less calcified left coronary sinus region. The calcified spot on the 

interior of the left coronary sinus was displaced by the TAV stent, causing stress 

concentration at the bottom of the left coronary sinus and consequently the aortic rupture. 

High stress and strain were generally observed at the aortic tissue where it contacted the 

calcification and stent struts. Contact radial force between the TAV stent and aortic root 

reached 109 N, when the stent was fully deployed. Rupture of the aortic root at the 

bottom of the left coronary sinus occurred at roughly 94 % of the balloon volume. The 

balloon pressure at full deployment was 3.5 atm. Rupture location in the simulation was 

the same as that in the clinical case. Both the coronary ostia occlusion index COOI and 

paravalvular leak index PVLI were 0, which suggested low potential occurrence of the 2 

adverse events. 

6.3.3 Simulation Results of Parametric Study on Material Parameters  

 The results of parametric study on material parameters are listed in Table 6.2. It 

should be noted that although patient specific material properties were used in this 

chapter, they were not necessarily representative of the trend of aging human material 



www.manaraa.com

 109 

properties. As shown in Figure 6.3, material properties of the 88-year-old female and 80-

year-old female were the more compliant than those of the 90-year-old patient. 

Consequently, no rupture was observed for the simulations with those two patients. In 

addition, the coronary ostia occlusion index COOI and paravalvular leak index PVLI, and 

the contact forces between the stent and root at the maximum expansion were similar 

among the three simulations. 

6.3.4 Simulation Results of Parametric Study on Balloon Volume  

 The results of parametric study on balloon volume are listed in Table 6.2. When 

the balloon was under-inflated below the nominal volume, the deformed stent had a more 

circular shape at the aortic annulus. On the other hand, the deformed stent had an 

elliptical shape due to the heavy calcification on non-coronary leaflet, when the balloon 

was inflated to the nominal volume. As a result of under-inflation, the cross-sectional 

area of the deformed stent was smaller than the aortic root at the annulus, there was a 

small potential of PVL when the injected fluid volume was 14 or 15 cc. However, when 

the balloon was under-inflated by 2 cc, no rupture was observed at the left coronary 

sinus. The peak stress on the aortic wall gradually increased when the injected fluid 

volume in the balloon was increased from 14 cc to 16 cc. The slight decrease in peak 

stress on the aortic root when the balloon volume was 17 and 18 cc could be explained by 

the fact that over-expansion of the balloon caused elevated stress and subsequently high-

stress elements were deleted from the model.  Additionally, as the injected fluid volume 

increased for the balloon, there was an increase in contact forces between the stent and 

tissue in both the radial and axial directions.  

6.3.5 Simulation Results of Parametric Study on Stent Height 

 The results of parametric study on stent height are listed in Table 6.2. In either 

case where 90 % or 10 % of the stent height was above the aortic annulus when the stent 
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was deployed, the contact forces between the stent and tissue, peak stress on aortic wall, 

and the risk of coronary ostium occlusion and PVL were comparable to those of the 

baseline case. The only noticeable change for the different stent deployment heights was 

that the aortic rupture was more extensive when the stent was deployed higher, which 

lead to the stent over-expansion in the softer aortic sinus region compared to the stiffer 

annulus region. 

 

Table 6.2 Summary of the simulation results of parametric studies on TAV deployment 

strategies. 

 

6.3.6 Simulation Results of Parametric Study on Calcification Location 

 For Scenario B, the deformed aortic root of the patient after the maximum stent 

expansion is shown in Figure 6.5. Similar asymmetric expansion of the TAV stent inside 

the aortic root was observed as a result of the calcification in the non-coronary and right 

coronary leaflets. However, the aortic root did not rupture at the bottom of the left 

coronary sinus. Contact force between the stent and aortic root at full TAV stent 

deployment was comparable to that of the original geometry.   

 For Scenario C, deformation of the TAV stent inside the aortic root was similar to 

the results from Scenario A and B. However, aortic root rupture was observed at the 

 Radial Contact 

Force (N) 

Axial Contact 

Force (N) 

Peak Stress 

(MPa) 
COOI PVLI 

Rupture 

Location 

Baseline 109 10 3.30 0.0 0.0 LCS 

Material 

Parameters 
      

80 YO Female 110 10 3.22 0.2 0.0 No Rupture 

88 YO Female 113 10 2.38 0.3 0.1 No Rupture 

Balloon 

Volume 
      

14 cc 33 3 1.48 0.0 0.1 No Rupture 

15 cc 64 6 2.15 0.2 0.1 LCS 

17 cc 197 17 3.28 0.3 0.0 LCS and RCS 

18 cc 265 22 2.16 0.2 0.0 LCS and RCS 

Stent Height       

High 115 10 2.53 0.3 0.0 LCS and RCS 

Low 114 10 2.78 0.3 0.0 LCS 
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bottom of the right coronary sinus (Figure 6.6), due to the displacement of the calcified 

spot on the interior of the right coronary sinus. Contact force between the stent and aortic 

root was also comparable to that of the original geometry at the full expansion. 

 

Figure 6.6 Deformed aortic roots after TAV implantation procedure showed possible 

aortic ruptures due to different locations and distributions of aortic calcification. 

 

6.3.7 Simulation Results of Parametric Study on Balloon Expansion Methods 

 i) Deformed TAV Stent Geometry. The top views of the deformed TAV stents 

obtained from the three different balloon expansion methods are illustrated in Figure 6.7. 

For the fluid controlled method, the TAV stent was deformed asymmetrically with 

respect to the axis of the aortic root due to the unequal distribution of the aortic 

calcification. The TAV stent was partially expanded in the non-coronary sinus region, 

while it was fully expanded in the other regions. For the displacement controlled 

simulation, a uniform radial expansion along the stent height was observed. The 

deformed stent geometry from the pressure controlled simulation was similar to that from 

the fluid controlled simulation, which also exhibited a slight dogbone shape. 
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Figure 6.7 Top views of the deformed shapes of the TAV stent obtained from the (a) fluid 

controlled, (b) displacement controlled, and (c) pressure controlled balloon expansion 

methods. 

 

 ii) Deformed Aortic Root Geometry. The deformed geometries of the aortic root 

obtained from the three different balloon expansion methods are plotted in Figure 6.8. 

For the fluid controlled simulation, the calcified spot on the interior of the left coronary 

sinus was displaced by the TAV stent, causing stress concentration at the bottom of the 

left coronary sinus. High stress and strain were generally observed at the aortic tissue 

where it contacted the calcification and stent struts. Rupture location in the simulation 

was the same as observed clinically. For the displacement and pressure controlled 

simulations, more extensive rupture was found at the bottom of both the left and right 

coronary sinuses.  

(a) (b) (c)

Location of Non-Coronary Sinus
 



www.manaraa.com

 113 

 

Figure 6.8 Deformed shapes of the aortic root obtained from the (a) fluid controlled, (b) 

displacement controlled, and (c) pressure controlled balloon expansion methods. 

 

 iii) Contact Force between the TAV Stent and Aortic Root. Contact force between 

the stent and aortic root, which was calculated by summing the normal contact forces of 

the node set that represented the outside surface of the stent, was output from the 

simulation. Contact forces between the TAV stent and aortic root for the fluid, 

displacement, and pressure controlled simulations were 109 N, 253 N, and 121 N, 

respectively. 

 iv) Computational Time. Different computational time was consumed by the three 

balloon expansion methods. The surface-based fluid cavity balloon expansion method 

was more computationally expensive than the other two methods. Computational time of 

TAV deployment of the patient using 32 CPU cores on a HPC cluster were 81 hrs, 25 hrs, 

and 28 hrs, for the fluid, displacement, and pressure controlled simulations respectively. 

(a) (b) (c)

Rupture Location
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6.4 Discussion 

 The TAV implantation cases reported in the literature as well as our simulation 

results of the baseline case showed that the combined presence of calcification on the 

interior of aortic sinus and asymmetric distribution of the aortic calcification might be 

critical in leading to aortic rupture during TAV implantation procedures. In such 

calcification configuration, special care should be taken, and aggressive and full balloon 

dilation should be avoided.  

 The results of the parametric study on the TAV deployment strategies showed that 

an optimal combination of the balloon injection volume and stent deployment height 

could be found using FE simulations to minimize the potential risk of the aortic rupture 

and PVL. Parametric study on material parameters demonstrated that although 

biomechanical characteristics are generally consistent among simulations using different 

patient-specific material properties, the extent of the rupture was sensitive to varied 

material parameters. Currently, there is a lack of human aortic properties in the literature. 

More material testing should be done in the future to obtain the range and distribution of 

the aged human aortic tissue properties for different gender and age groups; and aortic 

rupture potential could be presented as a probability factor.  

 Additionally, parametric study on balloon expansion simulation methods was 

conducted.  i) Surface-Based Fluid Cavity Balloon Expansion Method. During the 

clinical TAVI procedure, an inflation device is filled with a defined volume of fluid to 

achieve desired stent expansion. The entire volume in the inflation device is injected into 

the balloon independent of the pressure. The simulation results showed that the fluid 

controlled method could replicate the aortic rupture of the clinical TAVI case. 

Additionally, the realistic stent foreshortening and dogboning shapes were replicated by 

the fluid controlled simulation. The time history of the balloon pressure during expansion 

was extracted from the simulation and plotted in Figure 6.9, which shows the non-linear 

increase of the balloon pressure. However, the computational time to complete the fluid 
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controlled simulation for the patient in the study was nearly three times of the other two 

methods. 

 

Figure 6.9 Time-dependent pressure inside the TAV balloon during expansion obtained 

from the surface based fluid cavity simulation. 

 

 ii) Displacement Controlled Balloon Expansion Method. Using uniform radial 

displacement could precisely deform the stent to a target diameter. However, the 

deformation of the stent was not realistic, since the deformed shaped could vary with the 

patient-specific calcification distribution. The simulation results showed that the stresses 

of the sinuses and the contact force between the TAV stent and aortic root, predicted by 

the displacement controlled method, were significantly higher than the other two 

methods. Also, the extent of the aortic rupture was more severe that the clinical 

observations. These results suggested that displacement controlled simulation 

overestimated the biomechanical interaction between the TAV stent and tissue.  

 iii) Pressure Controlled Balloon Expansion Method. One limitation of 

implementing the pressure controlled method was the selection of the applied pressure, 

due to the fact that patients with different annulus size, calcification volumes and 

distribution would require various pressure inputs that could precisely expand the stent to 
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a desired diameter. In this chapter, for the sake of comparison, the final pressure value 

from the fluid controlled simulation was output and utilized as the input for the pressure 

controlled simulation. Although the final deformed shapes of the balloon and stent were 

similar, side by side comparison of the beginning stages of the expansion process 

revealed discrepancies between the two methods (Figure 6.10).  While the balloon 

expansion generated by the fluid controlled simulation was gradual and continuous due to 

the input of the constant flow rate, a sudden volume increase was noticed between 0.4 s 

and 0.5 s during the balloon expansion generated by the pressure controlled simulation. 

This artificial kinetic energy caused by the abrupt balloon movement might contribute to 

the slightly higher contact force and more rupture area compared to the fluid controlled 

method. 

 

Figure 6.10 Side by side comparison of the TAV stent deployment process for the fluid 

controlled (left) and pressure controlled (right) balloon expansion methods. 

 

0.1s 0.4s

0.2s 0.5s

0.3s 0.6s
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 The comparison of three different methods to simulate balloon expansion in 

TAVI procedure was presented. The aortic rupture site that is same as the clinical 

observations was reproduced by the surfaced based fluid cavity method, whereas it is the 

most computationally expensive. The displacement controlled method might 

overestimate the biomechanical interaction between the TAV stent and tissue. TAV stent 

and aortic root deformation that was similar to the fluid simulation could be obtained by 

using a linear pressure time history as input for the pressure controlled simulation. 

However, it is difficult to define the pressure input for the pressure controlled simulations 

due to patient-specific tissue compliance. The study of the three balloon expansion 

methods over one TAVI case demonstrated that the surfaced based fluid cavity could be 

the most accurate method notwithstanding the higher computational cost. 

6.5 Summary 

  Despite the increased global experience with transcatheter aortic valve 

replacement (TAVR), there remain 3 major adverse events. Aortic rupture, coronary 

artery obstruction, and paravalvular leakage (PVL) may occur with valve implantation. 

Oversizing or excessive radial expansion force with the TAVR stent may cause aortic 

rupture, while insufficient dilatation may lead to PVL and device migration. During 

TAVR implantation, native leaflet material may produce occlusion of the coronary ostia. 

A reliable prediction of the biomechanical interaction between native tissue and device in 

TAVR is critical for the success of this procedure. The results of the parametric studies in 

this section demonstrated that FE simulations of the TAV deployment could be utilized to 

find the optimal deployment strategies, and thus could be utilized as a pre-procedural 

planning tool to virtually predict device performance for TAVR and improve clinical 

outcomes. 
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CHAPTER 7 

CONCLUSIONS 

 

7.1 Summary 

 Since the first procedure in 2002, there has been an explosive growth in TAVI. By 

the end of 2012, a total of about 90,000 TAVI had been performed worldwide. Despite 

the increased global experience with TAVI, severe adverse events associated with TAVI 

have been extensively documented, including annulus rupture, coronary occlusion, PVL, 

pacemaker implantation, vascular complications and stroke. Currently, there is no 

effective method to pre-operatively predict and prevent these adverse events.  

 Successful deployment and function in TAVI is heavily reliant on the 

biomechanical interaction between the calcified aortic root and TAV device, which 

requires correct TAV sizing as well as optimal positioning and expansion of the device. 

For instance, oversizing or excessive radial expansion force of the TAV stent may cause 

aortic rupture, while insufficient dilatation may lead to PVL and device migration. 

During TAVI implantation, the native leaflet material may cause occlusion of the 

coronary ostia, while positioning the TAV stent too deep into the left ventricle may cause 

atrio-ventricular block. A reliable prediction of the biomechanical interaction between 

native tissue and the device in TAVI is critical for the success of this procedure. 

 To assist clinicians with diagnostic and preventative strategies to prevent these 

clinical adverse events, I used FE method to simulate the deployment of a TAV device 

into an individual patient aortic root and evaluate the tissue-device biomechanical 

interaction. The simulation output may be used as guidelines for proper TAV sizing and 

positioning, appropriate and desired TAV deployment strategies inside a patient’s aortic 

root to avoid the abovementioned adverse events. 
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 In this chapter, we will summarize main findings of the previous chapters. Then 

we will propose some of the areas for the future studies and present some of preliminary 

works that have been done in those directions. 

 Chapter 2 presented a methodology to reconstruct full 3D aortic root geometric 

models from clinical multi-slice computed tomography scans and measure accurate 

dimensions of anatomical characteristics of the aortic root that is needed for pre-

procedural planning of many valve procedures and development of novel valve 

intervention devices. Landmark points were placed on anatomic feature locations of each 

aortic root model for the measurement of aortic root dimensions. Diameters of the 

annulus, sinus of Valsalva (SOV), sino-tubular junction, and ascending aorta were 

compared with traditional 2D measurements. 

 In Chapter 3, aortic geometries reconstructed from MSCT scans were used to 

create computational models of TAV stent deployment and simulate the biomechanical 

interaction between the TAV stent and native tissue. The model incorporated aged human 

aortic material properties obtained from biaxial testing results. 

 Chapter 4 focused on the further improvement of the modeling techniques such as 

geometry reconstruction of detailed anatomical structures, fitting of the material 

parameters, and boundary conditions of the simulation. Subsequently, the developed 

method was utilized to analyze the mechanism of a clinical adverse event associated with 

TAVI. 

 In Chapter 5, we tried to validate our modeling approach by simulating the stent 

expansion process in animal models, which have been used in TAVI clinical feasibility 

studies. Micro-computed tomography scans of the porcine and ovine hearts were obtained 

to reconstruct initial geometries. The TAV stent deployment inside the animal aortic 

roots was simulated. The radial contact forces and stent pullout forces were compared to 

the experimental data in our previous study, where in-house self-expandable Nitinol 

stents were deployed inside porcine and ovine hearts to measure interactive forces. The 



www.manaraa.com

 120 

comparison of tissue-device contact forces between computational and experimental data 

demonstrated that the finite element simulations of TAV expansion in animal models 

could mimic the mechanical responses of the in vitro structural experiments.  

 In Chapter 6, parametric studies were conducted to examine the influence of the 

model input such as material properties, balloon volume, stent deployment height, 

calcification location, and different methods to simulate balloon inflation on TAVI 

simulation results and subsequently the potential clinical complications such as PVL, 

annular rupture, and coronary artery occlusion. 

 Major contributions of the thesis are: 

 i) Developed a methodology to reconstructed 3D aortic root FE models from 

patient-specific multi-slice CT images 

 ii) Incorporated detailed anatomical structures of the human aortic roots with 

aortic stenosis that are necessary for the simulations of TAVI deployment process 

 iii) Implemented aged human aortic tissue properties with material failure criteria 

 iv) Simulated realistic dynamic balloon expansion process using surface-based 

fluid cavity method 

 v) Examined the biomechanical interaction between the tissue and stent for 

patients with a high risk of clinical adverse events. 

7.2 Clinical Implications of This Research 

7.2.1 Use of 3D Models for Aortic Root Measurements 

 In TAVI procedure, sizing is generally defined as the process where a specific 

prosthesis size is selected from all the available sizes to best accommodate the patient’s 

aortic root. Optimal sizing is essential for anchoring a sutureless stent, and thus, is one 

the most important predictors of a successful TAVI procedure. In TAVI, the prosthesis 

size selected is usually slightly larger than the native annulus, which is crucial to prevent 
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PVL. In contrast, excessive oversizing could cause aortic annulus rupture, conduction 

disturbances and subsequent permanent pacemaker insertion. However, the estimated 

extent of oversizing strongly depends on the measurement used for annular sizing.  

 Depending on the imaging modality and the direction where the measurement is 

taken, the diameter of the aortic root could vary considerably. The aortic annulus mostly 

represents the narrowest part of the aortic root, and is defined as a virtual ring with 3 

anatomical anchor/hinge points at the base of each aortic leaflet attachment line. In 

TAVI, the aortic annulus offers the first resistance and anchoring force to the sutureless 

prosthesis. 

 Traditionally, 2D echocardiograms have been used for the measurements of the 

aortic annulus. Due to the increased understanding of the aortic valve anatomy, a single-

dimension measurement of the aortic annulus on 2D echocardiograms is not sufficient to 

represent the complex structure of the aortic root, and subsequently no longer accepted as 

the sole determinant of TAV sizing. Additionally, given the difficulty of locating the 

level of basal attachment or hinge points of the aortic valve cusps using 2D echo images, 

oblique measurements are usually taken, which could lead to over-estimation of the 

annular dimensions.  

 Over the past few years, due to the increased availability, MSCT has been 

integrated into clinical practice; and has become the preferred imaging modality for 

providing detailed and reliable description of the complex 3D aortic root geometry in 

patients undergoing TAVI. Clinical studies have shown that MSCT measurements of the 

aortic annulus have close correlation with direct surgical measurements; and are more 

reproducible then 2D echocardiography measurements. Despite the increased accuracy as 

a result of the improved spatial resolution compared to 2D echo images, aortic root 

measurements are still taken on a reconstructed 2D plane. Therefore, it might be difficult 

to identify the hinge points and align the virtual annular plane for patients with heavy 

aortic calcifications. Also, when a disproportionately large leaflet is present, using leaflet 
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hinge points to reconstruct the annular plane could result in oblique measurements in 

relation to the central axis of the LVOT. Furthermore, as TAVI procedure was 

increasingly used in off-label ways, reconstructing 2D plane for the aortic annulus could 

be a challenge for bicuspid aortic valve patients. 

 In Chapter 2 of this thesis, we proposed to use full 3D aortic root geometric 

models from clinical MSCT scans and measure dimensions of anatomical characteristics 

of the aortic root. The main advantage of using 3D aortic models is that, when the cross-

sectional cutting plane is reconstructed, the whole geometrical structure instead of the 2D 

images is visualized. Therefore, it is easier to identify the cutting plane where the aortic 

root measurements are taken (Figure 1.12). As a result, more accurate and reproducible 

measurements could be obtained for TAV sizing, especially for patients with heavy aortic 

calcifications or bicuspid aortic valves. Additionally, landmark points could be easily 

identified and placed on the 3D aortic root surfaces; and they could be used to gather 

important information for pre-procedural planning, such as the location and height of the 

coronary arteries.  

7.2.2 Use of TAVI Deployment Simulations for Device Selection 

 Minimally invasive TAVI procedure is accepted as standard of care for patients 

with inoperable severe aortic stenosis; and is non-inferior to surgical replacement for high 

risk patients. This revolutionary therapy also has the potential to treat medium-risk 

patients, with the advantages of less trauma and shorter recovery time, and thus may 

fundamentally change the current paradigm of surgical valve replacement. Since the first 

procedure performed in 2002, there has been an explosive growth in TAVI. By the end of 

2013, it is estimated that more than 100,000 TAVI have been performed worldwide. 

Despite the increased global experience with TAVI, severe clinical adverse events 

associated with TAVI have been extensively documented, including PVL, annulus 

rupture, coronary occlusion, pacemaker implantation, vascular complications and stroke. 
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Currently, there is no effective method to pre-operatively predict and prevent these 

adverse events. 

 Currently there are 8 TAVI devices which have received the CE mark. The 

balloon-expandable Edwards SAPIEN device has been used commercially in the US 

since November 2011. Self-expandable Medtronic CoreValve device was recently 

approved for commercial use in the US on Jan 17, 2014. One additional device, Edwards 

SAPIEN XT, received US FDA approval in the July 2014. These devices have distinct 

design and function features. Individualizing an optimal device for use should increase 

patient safety. However, this is not a trivial task and is complicated further by the 

existing, unresolved challenges of determining the correct sizing, positioning and 

expansion of the devices. 

 To assist clinicians with diagnostic and preventative strategies to mitigate TAVI-

associated adverse events and increase patient safety, the novel simulation-based 

approach that was proposed in this thesis could help clinicians select an optimal TAVI 

device from SAPIEN, CoreValve and SAPIEN XT, by virtually simulating and 

predicting the in vivo performance of each device. Our TAVI simulations could be 

particularly useful to appropriately size borderline cases or patients with abnormal aortic 

geometries. The simulation output, i.e., biomechanical characteristics mentioned in 

Chapter 6, could provide clinicians with critical information for appropriate device 

selection, proper TAVI sizing and positioning, and desired TAVI expansion inside a 

patient’s aortic root to avoid the many TAV  adverse events. 

7.2.2.1 Modeling of the Medtronic CoreValve 

 FE models of the stents are generated using the depictions in the literature to 

closely resemble the Medtronic CoreValve TAV geometry (Figure 7.1). The CoreValve 

system is available in 3 sizes (26, 29, and 31 mm) and can be implanted in native annuli 

with diameters ranging from 20 to 29 mm. 
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Figure 7.1 Medtronic CoreValve and finite element model of the size 26 CoreValve 

 

 The solid linear hexahedron element (C3D8I) with 4-element across the strut 

width and thickness and 4-element across a 90 degree arc are used to mesh the stent 

model to capture local peak stress/strain with high accuracy and efficiency. The stent 

material is Nitinol (NiTi), which is known for its superelasticity or the thermo-elastic 

phase transformation, the ability to transform between austenite (A) and martensite (M) 

phases with change in temperature. The NiTi is modeled with the phenomenological 

super-elastic constitutive model based on the formulation developed by Auricchio [172]. 

The material parameters were obtained from Tzamtizis et al. [73] with EA = 50kN/mm2; 

vA = 0.3; EM = 25 kN/mm2; vM = 0.3; σ 
   = 380 N/mm2; σ 

   = 400 N/mm2; σ 
   = 

250 N/mm2; σ 
   = 220 N/mm2;   = 7%; T0 = 37° C. 

 CoreValve model is crimped into a smaller size delivery catheter by radially 

displacing the crimper, which is modeled as a cylindrical tube. The deployment of the 

stent into the aorta root is initially achieved by advancing the catheter housing and the 

26 mm

(a) (b)
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crimped stent towards a desired aortic root and at the center of leaflet coaptation lines. 

The catheter is aligned with the annulus and perpendicular to the basal plane (Figure 7.2 

and Figure 7.3). The friction coefficient between the stent and catheter is 0.1 during 

release based on the studies by Mummert et al. [65] and Vad et al. [137]. The stent 

deployment is achieved by slowly retracting the catheter into the ascending aorta. Upon 

retracting the catheter, the proximal (inflow) portion of the stent that houses the valve 

will first flare out then the distal supra-annular region (Figure 7.4 and Figure 7.5). 

 

Figure 7.2 Side view of the crimped CoreValve device inside a TAVI patient before 

deployment 
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Figure 7.3 Top view of the crimped CoreValve device inside a TAVI patient before 

deployment 

 

 
Figure 7.4 Side view of the crimped CoreValve device inside a TAVI patient after 

deployment 
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Figure 7.5 Top view of the crimped CoreValve device inside a TAVI patient after 

deployment 

 

7.3 Future Directions 

7.3.1 Computational-Based Preoperative Planning 

 Patient-specific preoperative planning using computational tools could potentially 

mitigate the likelihood of adverse events associated with the TAVI procedure.  While the 

feasibility of patient-specific engineering analysis has been demonstrated through 

numerous studies, the main caveat preventing clinical implementation is the lack of 

model validation. Several groups have shown qualitative agreement between their 

simulation results and clinical outcomes, but in order to more rigorously validate these 

models more complete post-TAVI clinical data is needed, and this data is typically not 

collected as part of the standard-of-care.    

 There are also the existing issues regarding the accurate modeling of human aortic 

tissue properties. Currently, many groups still simplify the mechanical behavior of the 

aortic tissues by assuming homogenous and isotropic tissue properties. However, tissue 
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property heterogeneity and anisotropy play important functional roles. For instance, the 

local increased stiffness around the aortic annulus has a sizeable effect of aortic root 

deformation under clinical conditions [151].  Even when the aortic tissue properties are 

defined by mechanical parameters fitted to human tissue testing data, these tissue 

properties are not patient-specific.  The human tissue properties can vary greatly from 

patient to patient, and the impact of using different tissue properties in the existing TAVI 

models has not been assessed.   deally, a patient’s unique aortic tissue properties could be 

determined from noninvasive preoperative imaging data using inverse FE or other 

methods.  Inverse FE methods have been successfully applied for the stress analyses of 

blood vessels [139, 173, 174], but not for valve tissues.  

 The accuracy of the TAVI computational models presented here is also limited by 

the lack of fluid structure interaction (FSI) analysis.  FSI simulation of even native valve 

function is challenging. Currently, there are few heart valve FSI models, and those in the 

literature adopt idealized aortic geometries and tissue properties [175-180]. Therefore, 

FSI simulation of patient-specific TAV deployment may not be realistic at this time, but 

further development of these techniques could improve model accuracy in the future.  

It is important to note however that there is a trade-off between model accuracy and 

efficiency. In order for computational-based preoperatively planning to be realistic in the 

clinical setting, novel methods to improve computational efficiency should be explored. 

TAVI computational models with varying levels of complexity should be systematically 

tested and validated to determine the most computationally efficient while preserving 

accuracy. 

 While it was not the focus of this thesis, we have applied the FE modeling 

approach to several clinical TAVI patients. Presented here were the preliminary results of 

the application of the pre-procedural planning of TAVI procedure. A total of 6 TAVI 

cases were examined. First 5 cases were retrospective studies, including 1 annular rupture 

case, 3 successful cases, and 1 successful valve-in-valve case. For Case 6, our FE 
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analysis was performed before the scheduled TAVI; and simulation results were 

presented and discussed in the pre-procedural meeting. 

 Case Presentation. The 6 TAV implantation cases examined in the current study 

are listed in Table 1. Tricuspid aortic valve (Figure 7.6) was present in all 6 patients, 

where size 23 mm Edwards Sapien TAV valve was used. Case 1: Echocardiography 

revealed severe AS in the non-coronary leaflet as well as the interior of the aortic root; 

only left coronary leaflet could open during cardiac cycles. The pre-procedural MSCT 

scans (Figure 7.6) showed heavy calcification on the non-coronary leaflet, and one large 

calcified spot on the interior of the left coronary sinus at the level between the ostium of 

the left main stem and the aortic annulus entering the myocardium. During TAVI 

procedure, tearing happened and visualized below the left main coronary artery. Case 2, 

3, and 4: A normal appearing percutaneously placed TAV was present in the aortic 

position. There was trivial or no central aortic insufficiency. The post-procedural mean 

transaortic valvular gradient was normal. Case 5: The implantation height of the first 

TAV was suboptimal, as the native leaflet insertion point was adjacent to the lower edge 

of the stent. PVL was present after the deployment of the first TAV. Subsequently, a 

second TAV was deployed inside the first one, in an attempt to correct the complication 

due to suboptimal valve positioning. Post-TAV implantation mean transaortic valvular 

gradient was 12 mmHg after the deployment of the second TAV. There was no aortic 

insufficiency. Case 6: Small and narrow left sinus of Valsalva was observed. Porcelain 

aorta was also present in the patient. Based on initial screening, the patient could be 

considered as a candidate to TAV implantation. FE analysis was performed before the 

scheduled TAV implantation; and the simulation results were presented and discussed in 

the pre-procedural meeting. The patient was prepared and catheterized in the hybrid 

operating room; and was further evaluated using echocardiography and angiography. On-

site imaging assessments suggested potential high risk for the complication of coronary 
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artery occlusion and annulus rupture, which agreed with FE simulation results.  The TAV 

implantation procedure was cancelled. 

 

Case 1

Case 2

Case 3
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Figure 7.6 Multi-slice computed tomography images of the stenotic aortic valve in long-

axis and short-axis views, and reconstructed patient-specific finite element aortic root 

models. 

 

 Simulation Results. Our simulation results of TAV deployment were generally in 

good agreement with clinical observations and the angiogram and echocardiogram of the 

6 patients. The angiogram images and deformed cross-sectional geometry of aortic root 

FE model of Case 2 (Figure 7.7a) before, (Figure 7.7b) during, and (Figure 7.7c) after 

balloon expansion are shown in Figure 7.7. Side views of the deformed aortic root after 

the maximum stent deployment were used to evaluate the potential coronary artery 

Case 4

Case 5

Case 6
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occlusion (Figure 7.8); and top views of the TAV stent inside the deformed native leaflets 

were utilized to assess the possible PVL (Figure 7.9).  

 

Figure 7.7 The angiogram images and deformed cross-sectional geometry of aortic root 

FE model of Case 2 (a) before, (b) during, and (c) after balloon expansion. 

(a) (b) (c)
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Figure 7.8 Side views of the deformed aortic root after the maximum stent deployment 

were used to evaluate the potential coronary artery occlusion. 

  

Case 1 Case 2 Case 3
Left COLeft CO Left CO

Left CO

Case 4 Case 5 Case 6
Left CO Left CO
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Figure 7.9 Top views of the TAV stent inside deformed native leaflets were utilized to 

assess the possible paravalvular leak. 

 

 Case 1 Aortic Rupture Case: The simulation of the TAV implantation procedure 

revealed that asymmetric distribution of the aortic calcification lead to asymmetric 

expansion of the TAV stent with respect to the center of the aortic root. The TAV stent in 

the non-coronary sinus region was partially expanded (Figure 7.9), compared to fully 

expanded stent in the less calcified left coronary sinus region. The calcified spot on the 

interior of the left coronary sinus was displaced by the TAV stent, causing stress 

concentration at the bottom of the left coronary sinus. Contact radial force between the 

TAV stent and aortic root reached 109 N, when the stent was fully deployed. Rupture of 

the aortic root at the bottom of the left coronary sinus occurred at roughly 82 % of the 

Case 1 Case 2 Case 3

NCS

LCS

RCS

NCS
LCS

RCS

Case 4 Case 5 Case 6

NCS
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RCS
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balloon volume. Rupture location in the simulation was the same as that observed in Case 

1. Case 2, 3, and 4 Successful Cases: Our simulation results of TAV deployment were 

comparable to the angiogram and echocardiogram of the patients. No potential coronary 

artery occlusion (Figure 7.8) or PVL (Figure 7.9) was present. Case 5 Valve-in-Valve 

Case: The valve positioning of the first TAV was replicated in the FE model. PVL 

(Figure 7.9) was also observed in our simulation results after the deployment of the first 

TAV. The location of the leak was similar to the echocardiogram of the patient. Case 6 

Cancelled Case: Our simulation suggested possibility of left coronary artery occlusion, 

which was in accordance with imaging assessments. Moreover, aortic rupture was present 

in our simulated findings. 

 In this section, we presented, to our knowledge, the first study using retrospective 

and prospective patient imaging data to develop realistic patient-specific FE models of 

TAV implantation procedure, which incorporated human aortic tissue material properties 

with material failure criteria, and balloon expansion process. Our simulation results 

demonstrated that the FE models of the 5 retrospective cases accurately replicated clinical 

outcomes of the TAV implantation procedures, especially adverse events such as PVL 

and aortic root rupture. Furthermore, our method was implemented in a prospective case 

study. Our simulation predicted the possibility of left coronary artery occlusion, which 

agreed with imaging assessments of the patient. 

7.3.2 Computational-Based TAV Design Optimization 

 While computational-based preoperative planning necessitates patient-specific 

analyses, population-based probabilistic studies will be important for TAV design 

optimization.  As discussed in the previous sections, the human aortic anatomy and tissue 

properties are highly variable and this creates uncertainty in the deployed TAV stent 

geometry as well as the leaflet coaptation. Probabilistic TAV computational models 
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which account for this uncertainty will facilitate the design of next-generation TAV 

devices which are more robust to common deployment configurations.  

7.3.3 Emerging Clinical Challenges 

7.2.2.2 TAVI to Treat Aortic Insufficiency 

 Currently TAVI is only recommended for patients with severe AS: the 

commercially available, first generation, TAV devices are not suitable for patients with 

noncalcific aortic valve disease.  The presence of leaflet calcification helps prevent 

device migration, and without calcification new anchoring methods must be explored.  

Several devices currently in clinical trials employ new anchoring methods and show 

promising results [181-183]. 

7.2.2.3 TAVI to Treat Bioprosthetic Valve Failure 

 TAV implantation within a failed surgical bioprosthetic valve has been shown to 

be feasible and safe with a reported procedural success rate of 93.1% in the largest 

reported TAV-in-surgical valve registry to date with 202 patients from 38 centers [184]. 

Considering this success rate with the morbidity and mortality associated with valve 

reoperation valve-in-valve (ViV) treatment for surgical valve failure will likely become 

an increasingly attractive option for both patients and clinicians [185].  However, the ViV 

configuration has been shown to distort the newly implanted TAV leaflet 

configuration[142], and has been hypothesized to affect transvalvular gradients, effective 

orifice areas, and leaflet and stent durability [121, 186-191].  The altered TAV 

biomechanics in this setting is not well understood, and will be an important area of 

research to determine optimal ViV strategies.  
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7.2.2.4 TAVI Long-Term Durability 

 Little is known about the long-term durability of TAVI devices in general, owing 

to the relative immaturity of TAVI and the advanced age and illness of the patients 

selected for this treatment.  However, TAV leaflets are made of similar materials as 

surgical bioprosthetic valves with known durability issues, and TAV leaflets have been 

shown to experience  higher leaflet stresses and strains [68, 70] than traditional surgical 

valves, particularly in the presence of aortic calcification resulting in non-circular, 

asymmetric stent deployment [70].  Therefore, it follows that as we gain experience with 

TAVI, device failure due to leaflet degeneration may become a more significant problem.  

Before TAV intervention can be considered a potential alternative treatment for lower-

risk patients with longer life expectancies, there is a pressing need for new strategies to 

evaluate and improve leaflet durability. 
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APPENDIX A - QUANTIFICATION OF STRUCTURAL 

COMPLIANCE OF AGED HUMAN AND PORCINE AORTIC ROOT 

TISSUES 

 

 In this appendix, due to the limited knowledge of structural compliance and 

regional variation of aged human aortic root tissue in the literature, inflation tests were 

conducted to characterize the regional structural compliance of the aged human aortic 

root. The results generated in this appendix could be valuable to TAVI clinical feasibility 

studies using animal models and future prosthetic device design. 

A.1 Introduction 

 Aortic root is defined as the portion of the left ventricular outflow tract which 

supports the leaflets of the aortic valve, delineated by the sinotublular ridge superiorly 

and bases of the valve leaflets inferiorly [36]. It comprises the sinuses, the aortic valve 

leaflets, the commissures, and the interleaflet triangles. The sinuses are expanded 

portions of the aortic root which are confined proximally by the attachments of the valve 

leaflets and distally by the sinotubular junction. The most common forms of aortic root 

diseases include aortic stenosis and aortic aneurysms. Surgical and transcatheter 

approaches have been used to treat these diseases with the purpose of restoring the 

normal function of the aortic root. Hence, the knowledge of both normal anatomy and 

physiological function of the human aortic root is critical to the clinical success of these 

operations [192]. Moreover, since aortic root diseases primarily affect patients with 

advanced age, there is a dire need for a complete understanding of biomechanical 

responses of aged human aortic tissues. However, the knowledge of structural 

compliance and regional variation of aged human aortic root tissue remains very limited. 
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The extensibility of the aortic root in the circumferential (CIRC) and longitudinal 

(LONG) directions was studied by several research groups [193-196] using pressure 

inflation tests with radiopaque markers or sonomicrometric crystals using either in vitro 

or in vivo animal models. The results were, however, limited to the overall dimensional 

changes of the whole aortic root, not specific to each of the sinuses. Studies using either 

planar biaxial tests [197-202] or uniaxial tests [203, 204] quantified the aortic root 

material properties at a specific location. Since the aortic root is heterogeneous, the 

overall aortic root structural compliance may not be accurately derived using such 

localized material testing data.  

 In this section, regional structural compliance of the aged human aortic root was 

characterized and compared, including the three sinuses: the non-coronary sinus (NCS), 

the left coronary sinus (LCS) and the right coronary sinus (RCS), and at three regions 

along the LONG direction of each sinus: the upper sinus (US), the middle sinus (MS) and 

the lower sinus (LS) near the aortic annulus, and the ascending aorta (AA) above the 

NCS. Since porcine models were used to assess the feasibility of transcatheter aortic 

valve (TAV) implantation under the assumption that porcine tissues are similar to aged 

human tissues [205], porcine aortic roots were also characterized and compared to the 

human ones.  

A.2 Materials and Methods 

A.2.1 Tissue Preparation 

 Ten human cadaver hearts (age of 81.00 ± 8.74 years and weight of 563.50 ± 

218.35g) without any valvular heart disease were obtained from the National Disease 

Research Interchange (NDRI, Philadelphia, PA). The use of human tissues was approved 

by the Institutional Review Board at the University of Connecticut. The characteristics of 

human specimens were listed in Table A.1. All human hearts were fresh frozen within a 
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post-mortem recovery interval (15.32 ± 6.51 hours) and remained frozen until delivery on 

the next day. All hearts were stored in 80˚  freezer prior to testing. Ten fresh frozen 

porcine hearts (6  9 months old and weight of 600.09 ± 75.46 g) were obtained from the 

Animal Technologies, Inc. (Tyler, TX) and stored in 80˚  freezer. Prior to testing, each 

heart was submerged in a  7˚  water bath until totally defrosted. Both human and 

porcine hearts were frozen and thaw using the same procedure. The aortic root including 

ascending aorta was carefully separated from the left ventricle and surrounding tissues. 

All adherent connective and fatty tissues on the surface of the aortic root were carefully 

removed from the specimens. The coronary arteries were occluded with sutures to 

prevent leakage during pressurization of the aortic root.  

 

Table A.1 Patients’ clinical information 

 

Footnote: ALZ: Alzheimer’s disease,  A: cardiac arrest, CHF: congestive heart failure, 

COPD: chronic obstructive pulmonary disorder, CPA: chronic pulmonary aspergillosis, 

HCL: Hypercholesterolemia (high cholesterol levels), HTN: hypertension, RA: 

respiratory arrest, UNKN: unknown, VD: Vascular Dementia. 

 

 

Specimen 1 2 3 4 5 6 7 8 9 10

Age 81 96 82 75 63 75 82 83 87 86

Sex F F M M M F M M F F

Cause of death ALZ CPA COPD CA UNKN CPA CPA VD UNKN UNKN

Risk factors

Hypertension N N Y N Y Y Y Y N Y

Diabetes N UNKN Y N N N N N N N

Asthma N N N N N N N N Y N

Pneumonia Y N N N N N N N N N

Dementia Y N N N N N N Y Y Y

HCL N N N N Y Y Y N N Y

Emphysema N N N N N N N N Y N
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A.2.2 Experiment Setup 

 Each aortic root was cannulated at the AA using a plastic fitting, mounted 

vertically to a laboratory stand via a plastic ring clamp, and submerged in 0.9% saline 

solution. Fig. A.1 shows the setup of the inflation test system. The plastic fitting was 

connected to a pressure transducer (model BLPR2, World Precision Instruments, 

Sarasota, FL) and a 100 mL surgical syringe through plastic barb fittings and flexible 

tubing. The syringe filled with saline solution was used to pressurize the aortic root. A 

hand-held pressure gauge with a range up to 300 mmHg was connected to the tubing for 

calibration of the pressure transducer. The pressure transducer and hand-held pressure 

gauge were positioned at the same height level as the aortic root in order to minimize the 

pressure difference. The pressure transducer was calibrated up to 200 mmHg against the 

pressure gauge with error less than 1 mmHg. After 10 cycles of preconditioning, the 

aortic root was inflated from 0 to 200 mmHg by smoothly injecting saline solution to the 

root. An inflation pressure of 200 mmHg was chosen because the aortic root may bear 

high loads during procedures such as TAV implantation. Two CCD cameras (model XC-

ST50, Sony Corporation of America, Park Ridge, NJ), positioned approximately 30 

degree apart from each other, were utilized to capture the motion of the markers on the 

specimen at 30 frames per second. An in-house LabVIEW (National Instruments, Austin 

TX) program was developed to simultaneously acquire videos from the two cameras and 

pressure data from the pressure transducer.  
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Figure A.1 Schematic of the primary components in the inflation test system, including a 

specimen chamber, an inflation test system consisting of a pressure transducer, pressure 

gauge, syringe and two digital cameras. 

 

A.2.3 Surface Strain Computation  

 The marker layout on the aortic root is shown in Fig. A.2a. The markers were 

used to calculate the mechanical responses of each sinus and at three regions along the 

LONG direction— US, MS and LS, as well as AA. To minimize the effect of coronary 

arteries on the strain measurement of RCS and LCS, the markers were affixed away from 

coronary arterial ostia. The marker pattern on the specimen was arranged so that each 

region consists of 7 markers (Fig. A.2b). Three dimensional (3D) spatial coordinates of 

the markers were reconstructed from the 2D images using the direct linear transformation 

Fig. 2 Schematic of the primary components in the inflation test system, namely a
specimen chamber, an inflation test system consisting of a pressure transducer, 
pressure gauge, syringe, and two cameras.
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method [206-208]. The 3D coordinates of all markers were captured at all frames to 

calculate the displacement gradients and the regional in-plane Green strain.  

 

Figure A.2 a) The marker layout on the surface of non-coronary sinus (NCS) demarcating 

the Upper Sinus (US), Middle Sinus (MS) and Lower Sinus (LS) regions and the 

ascending aorta (AA). Note the AA was tested on the region superior to NCS only; b) the 

numbering of the markers on each sinus region. 

 

 To compute the in-plane Green strain within each region, shell-based 2D 

isoparametric finite element shape functions [209] were used to fit the surface geometry 

of each region. Following the surface fitting methods reported by Sacks et al. 2002 [210], 

the local surface of aortic sinus, in the region delimited  by the 7 markers, was 

approximated by a seven-node C0-continuity quadratic Lagrangian element. The surface 

fitting of the initial state (Pressure = 0 mmHg) yields the reference configuration of the 

region. To determine the strain field at each frame, the displacements of each marker 

were computed as the difference between the reference and the deformed spatial marker 

positions. The displacement component was fitted separately using the same shape 

functions. This fitting was completed for each region at each frame. The in-plane 

AA

MS

US

LS

Longitudinal

Circumferential

Fig 1. (a) The marker layout on the surface of NCS and ascending aorta. Note ascending 
aorta was only tested on the region near NCS. (b) The numbering of markers. 

(a) (b)
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components of Green strain (𝐸  ) were determined by the fitted continuous displacement 

functions (ui), as follows:  

 𝐸   
 

 
[
   

   
 

   

   
 

   

   

   

   
]  (A.1) 

where xi and xj indicate differentiation with respect to the in-surface coordinate 

components, α is the repeating index. The respected stretches 11 and 22 in the CIRC 

and LONG directions were calculated for each region by 

 
    √       

    √      

(A.2) 

 

where u and v are unit vectors along the CIRC  and LONG directions, respectively,   

       denotes the right Cauchy-Green tensor, where I is the identity tensor.  

A.2.4 Data analysis  

 To estimate the structural stiffness of aortic root tissues, the pressure–strain elastic 

modulus Ep is calculated [211] by 

 𝐸  
    −     

     −           
  (A.3) 

where sys and dia denote the systolic and diastolic phases, respectively. We chose Pdia = 

10.67 kPa (80 mmHg) and Psys = 16.00 kPa (120 mmHg).       and       are 

corresponding stretches in either CIRC or LONG direction. The pressure-strain elastic 

modulus was used to compare the structure stiffness between different regions.   

 To further analyze the aortic compliance, the extensibility of the samples was 

calculated and compared via the areal strain as follows  

𝑒             –          (A.4) 
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where λ  p and λ  p are the   R  and LONG stretch values, respectively, at three 

pressure levels of p =10, 15, and 25 kPa. A pressure of 25 kPa was chosen to represent a 

hypertensive condition. Patients’ characterization including age, gender, hypertension 

(HTN) or normotensive (NTN) were related to the biomechanical parameters to 

determine any correlation.  

A.2.5 Statistical Analysis  

 Statistical analyses were evaluated using SigmaPlot (V11.0, Systat Software Inc., 

San Jose, CA). Both one-way and two-way Repeated Measures ANOVA tests were used 

to compare the difference among the three sinuses and the regions along the LONG 

direction. The Tukey pairwise multiple comparison procedures were performed to 

identify which group is different, with p < 0.05 was considered a statistically significant 

difference and p < 0.00  indicates highly statistical significance. The Student’s t-test was 

used to determine significant differences between the parameters between human and 

porcine tissues. 

A.3 Results 

A.3.1 Pressure-Green strain responses 

 The mean pressure-Green strain responses of human and porcine sinus tissues 

were shown in Figs. A.3 and A.4. The human tissues were distinctively stiffer than 

porcine tissues. Specifically, the human tissue stiffened rapidly at a low pressure range of 

5 – 10 kPa, whereas porcine tissue responses behaved linearly up to 15 – 20 kPa. At the 

pressure of 27 kPa, the peak strains were similar in both LONG and CIRC directions for 

the human aorta, while for the porcine aorta the CIRC strains were higher than the LONG 

strains (Table A.2). Similar to the sinuses, the structural responses of human AA tissues 

were much stiffer than those of porcine tissues, as shown in Fig. A.5.   
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Figure A.3 The pressure-Green strain curves (mean and standard error) in the 

circumferential (CIRC) direction of human (HH) and porcine (PH) aortic root tissues. 

LCS – Left Coronary Sinus, RCS – Right Coronary Sinus, NCS – Non-coronary sinus, 

US – Upper Sinus, MS – Middle Sinus, and LS – Lower Sinus. 
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Figure A.4 The pressure-Green strain curves (mean and standard error) in the 

longitudinal (C) direction of human (HH) and porcine (PH) aortic root tissues. 
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Figure A.5 The pressure-Green strain curves (mean and standard error) in the 

circumferential (C) and longitudinal (L) directions of human (HH) and porcine (PH) 

ascending aortic tissues. 

 

Table A.2 Maximum strains at a maximum stress of 27 kPa for both human and porcine 

aortas. 

 

  

 There are no significant differences in the pressure-strain modulus among the 

three human sinuses, see Fig. A.6a (i.e., the averaged responses of LS, MS and US of 

each sinus). However, various regional differences were observed, see Fig. A.6c-d. In the 

CIRC direction, the LS regions were the stiffest in the LCS (p = 0.023) and RCS (p = 
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Fig. 7 Pressure vs Green strain data (mean and standard error) in (a) circumferential and (b) 
longitudinal directions of human (HH) and porcine (PH) ascending aortas under 200 mmHg. 

(b)(a)

Human  Porcine  
CIRC LONG CIRC LONG 

LCS  

US 0.15± 0.08 0.13± 0.07 0.41± 0.08 0.29± 0.09
MS 0.12± 0.07 0.16± 0.09 0.42± 0.10 0.28± 0.12

LS 0.10± 0.08 0.15± 0.10 0.45± 0.07 0.45± 0.13
RCS

US 0.12± 0.06 0.12± 0.04 0.56± 0.09 0.47± 0.18
MS 0.11± 0.05 0.12± 0.08 0.51± 0.11 0.41± 0.17

LS 0.10± 0.05 0.10± 0.04 0.45± 0.09 0.44± 0.10
NCS

US 0.12± 0.06 0.15± 0.07 0.40± 0.08 0.28± 0.14
MS 0.10± 0.05 0.12± 0.08 0.38± 0.05 0.24± 0.10

LS 0.08± 0.05 0.05± 0.04 0.42± 0.05 0.44± 0.13
AA 0.12± 0.05 0.13± 0.08 0.39± 0.09 0.73± 0.42
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0.048) sinuses, while NCS had relatively uniform stiffness. In the LONG direction, there 

were no significant difference of stiffness among the three LS, MS and US regions. 

However, the AA regions were significantly more compliant than the LS regions of LCS 

(p = 0.035), RCS (p = 0.028), NCS (p = 0.016) and the MS regions of RCS (p = 0.008) 

and NCS (p = 0.004). 

 

Figure A.6 Variation of the pressure-strain modulus in the circumferential (CIRC) and 

longitudinal (LONG) directions among the three sinuses of (a) human and (b) porcine 

tissues and among the regions of the sinuses in the (c) CIRC and (d) LONG of the human 

and porcine aortic tissues. * p < 0.05 compared to LS; † p < 0.05 compared to MS; § p < 

0.05 compared to AA. All human aortic tissues were significantly stiffer than the 

corresponding porcine tissues. 
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 Significant differences between porcine sinuses were observed: NCS was stiffer 

than RCS (p < 0.001) in both CIRC and LONG directions and LCS (p = 0.042) in the 

CIRC direction. LCS was stiffer than RCS in the CIRC (p = 0.027) and LONG (p < 

0.001) directions, as shown in Fig. A.6b. For the regional variation, in the CIRC 

direction, LS was stiffer than US (p = 0.001) and MS (p = 0.006) of LCS, US (p < 0.001) 

of RCS, US (p < 0.001), MS (p = 0.018) of NCS and AA (p < 0.001). The MS regions 

were stiffer than US of RCS (p = 0.033) and AA (p = 0.016). No regional differences 

were observed in LONG direction of porcine specimens.  

A.3.2 Areal strain comparison 

 No regional differences in areal strain were observed between sinuses and regions 

in human LCS and RCS specimens (Fig. A.7). For human NCS, the US and MS regions 

were significantly more extensible than LS regions (US vs. LS: p < 0.001 at all pressure 

levels; MS vs. LS: p <0.05 at all pressure level). For porcine specimens, on the other 

hand, the LS regions were more extensible than other regions, particularly compared to 

US and MS regions in LCS (LS vs. US: p < 0.05; LS vs. MS: p <0.05) and NCS (LS vs. 

US: p < 0.05; LS vs. MS: p <0.05). For the RCS specimens, however, LS regions were 

similar to other regions at all pressure levels. The porcine AA specimens were more 

extensible than all sinus regions, p < 0.05. Note that for human specimens, no differences 

in areal strain were observed between the sinuses and AA specimens or between the 

pressure levels. A significant difference was observed in all pairwise comparison of areal 

strain between human and porcine aortic tissues.  
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Figure A.7 Variation in (a) circumferential (CIRC) and (b) longitudinal (LONG) 

pressure-strain modulus of the human and porcine aortic tissues. * p < 0.05 compared to 

LS; § p < 0.05 compared to AA. Difference between stress levels within sinus and 

regions are all significant for porcine, but not human tissues. All human aortic tissues 

were significantly stiffer than the corresponding porcine tissues. 
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A.3.3 Correlation between age and compliance 

 A correlation trend was observed between age and human aortic compliance. Fig. 

A.8 shows the aortic tissue areal strain significantly decreased as age increases in LCS 

and NCS. While all regions in NCS specimens negatively correlated strongly with age, 

only the MS and LS of LCS decreased as age increases. The pressure-strain moduli 

correlated very weakly with age and were only significant for the LS (p = 0.045 for CIRC 

direction) and MS (p = 0.041 for LONG direction) of LCS specimens.  

 

Figure A.8 Correlations between age and areal strain for (a) LCS and (b) NCS specimens. 

Table shows the correlation coefficient, R, and p-values. Solid lines are the linear fits to 

the datasets. 

 

A.4 Discussion 

 In this appendix, the structural properties of the aged human and porcine aortic 

tissues were investigated using a 3D marker tracking technique. This tracking technique 

allowed quantification and comparison of the structural properties of three regions along 
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the LONG direction of the three sinuses, and AA. We found that tissue stiffness at the 

physiological pressure range was similar among the human three sinuses. The AA region 

were found to be more compliant than the sinuses, which is consistent with other studies. 

Martin et al. [201] found that AA tissues were more compliant than LCS and RCS tissues 

in the LONG direction. Azadani et al. [197] found that fresh human AA tissues were 

significantly more compliant than the sinus tissues in both the CIRC and LONG 

directions. Similarly, Gundiah et al. [202] also determined that their porcine sinus tissues 

were stiffer than AA tissues in both directions. 

 The regional structural stiffness of human aorta was observed. The CIRC LS 

regions were the stiffest in the LCS and RCS sinuses, while NCS had relatively uniform 

stiffness. The observation that human LS was stiffer than MS and US may be explained 

by the fact that calcification of human aortic roots is mainly localized at the region 

adjacent to the aortic annulus. The samples were selected from an advanced aged patient 

group. Light calcium deposition was observed in the lumen layer of the root, at the 

annular-sinus regions, commissure regions and sinotubular junction in most of patient 

samples as shown in Fig. 9, which could contribute to the high stiffness of the LS region. 

However, it did not affect the valve function, i.e. the valves were closed properly during 

testing.  Another factor that might have caused a high stiffness in structural tissue 

properties is hypertension. Hypertension is a significant risk factor for many diseases and 

is well known to induce changes in the mechanical properties of the cardiovascular [212] 

and other arteries [213]. A total of six out of ten patients had a record of systematic 

hypertension. We observed that these three out of six patients exhibited a higher 

physiological stiffness than the group mean in the LS region. Our observation suggests a 

trend towards an increase in physiological stiffness with either or both calcification and 

hypertension. In addition, a negative correlation between age and human tissue 

compliance was observed. The microstructural components such as elastin and collagen 

play an important role in tissue compliance. Studies have shown that the decrease in 
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elastin functionality [214] and the increase in collagen fiber recruitments with aging [215, 

216] might greatly impact the mechanical properties of aortic tissues, resulting in higher 

stiffness and lower areal strain. A future study on the changes of the microstructure in 

aging aorta in relation to changes in the structural properties as a result of the 

hemodynamic alternation is needed to elucidate an increase in stiffness of aged human 

aortic tissues.   

 

Figure A.9 Representative images of the Left-Coronary Sinus (LCS), Right-Coronary 

Sinus (RCS) and Non-Coronary Sinus (NCS) of a human aortic root (Specimen 5). 

Asterisks indicate locations of calcium deposition in the lumen layer of the aortic wall. 

[1mm sub-division for all images] 

 

 Statistical significant differences in stiffness and areal strain between human and 

porcine aortic root tissues were found in this section, which is similar to a previous study 

[201] comparing the planar biaxial mechanical properties of human and porcine aortic 

tissues. One reason is that human specimens used in this section were obtained from 

older patients with mean age of 81 ± 8.74 years, which could result in an overall higher 

stiffness of human aortic tissues. As shown in Fig. A.7, for human samples, there was no 

significant increase in the areal strain when pressure increased from 10 to 25 kPa. 
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However, for porcine specimens, there was a significant increase in the areal strain as 

pressure increases. These differences indicate that porcine aortic tissues might not be 

analogous to human. As this phenomenon has been previously reported in aortic tissues 

[201] and other cardiovascular tissue studies [159], it is important to know the 

discrepancy between the animal and human models to avoid erroneous assumption when 

one attempts to apply animal data to human study, particularly in the pre-clinical animal 

study of prosthetic devices. Computational modeling has also been employed as a 

predictive tool to study the biomechanics of the aortic root and to better understand the 

complex interactions between prostheses and host tissues. To date, due to the lack of 

experimental data, many computational studies assumed homogeneity [97] of aortic root 

and of different locations on the root. The aortic root has been characterized as either 

linear elastic (isotropic or anisotropic) [217-221] and nonlinear hyperelastic [222-225]. 

The current experimental data provide a detailed quantification of regional aortic 

responses which could be used to derive tissue material responses using inverse finite 

element analysis [226] as well as to validate the simulation results. 

A.4.1 Limitations 

 Several assumptions and simplifications were made in the present study. Both 

human and porcine tissues were frozen prior to testing. Therefore, the structural 

properties obtained might be different than those of fresh tissues. Due to the limited 

sample size, we were not able to identify any correlation between structural properties to 

age, gender and disease states such as hypertension. The graphite markers on the LCS 

and RCS might not be affixed in the central area of the sinus due to the presence of the 

coronary arteries. In addition, the structural properties of the AA were measured 

approximately 5 - 10 mm above the NCS. We also assumed that the material properties of 

this region were not varied along the CIRC direction. The anterior and posterior regions 
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of AA tissues were reported to be similar in the studies by Gundiah et al. and Azadani et 

al. [25, 26].  

A.5 Conclusion 

 In this appendix, the regional structural compliance of aged human and porcine 

aortic tissues was quantified. The experimental results of ten aged human hearts revealed 

no significant difference in stiffness among the sinuses in both directions. The regional 

structural stiffness of human aortas in CIRC direction varied with the LS being the 

stiffest in left and right sinuses. The NCS regions were uniform in stiffness in both CIRC 

and LONG directions. The asymmetric structural properties were observed among 

porcine aortic sinuses, with the NCS being the stiffest in the CIRC direction and the RCS 

being the least stiff in both directions. Stiffness in porcine lower regions was higher than 

middle, upper sinuses and ascending aortas in the CIRC direction. Aged human aortic 

tissues were significantly stiffer than 6-9 months old porcine aortic tissues, indicating that 

the mechanical properties of porcine may not be analogous to aged human ones. These 

observations suggest that clinical interpretations of animal trials on prosthetic devices 

should be determined with caution.  
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